Suppr超能文献

关于葡萄糖图上的(,Θ)-希尔弗分数阶微分及包含系统的研究。

Study of (,Θ)-Hilfer fractional differential and inclusion systems on the glucose graph.

作者信息

Zhang Lihong, Liu Xuehui, Wang Guotao

机构信息

School of Mathematics and Computer Science, Shanxi Normal University, Taiyuan, Shanxi 030031, China.

出版信息

Heliyon. 2024 May 17;10(10):e31285. doi: 10.1016/j.heliyon.2024.e31285. eCollection 2024 May 30.

Abstract

This article combines -Hilfer fractional calculus with glucose molecular graph, defines fractional differential and inclusion systems on each edge of a glucose molecular graph by the assumption that 0 or 1 marks the vertices, and studies the single-valued and multi-valued -Hilfer type fractional boundary value problems on the glucose molecular graph. On the one hand, the existence and uniqueness of solutions in the single-valued case are proved by using several fixed point theorems. On the other hand, in the multi-valued case, we consider that the right side of the inclusion has convex valued and non-convex value. By applying Leray-Schauder nonlinear alternative method of multi-valued maps as well as Covitz-Nadler fixed point theorem of multi-valued contractions, two existence results are obtained respectively. On this basis, we also get the topological structure of the solution set, which is a pioneering work for ()-Hilfer fractional differential inclusion on the glucose graph. Finally, several examples are provided to verify the reliability of our proposed results.

摘要

本文将-Hilfer分数阶微积分与葡萄糖分子图相结合,通过假设0或1标记顶点,在葡萄糖分子图的每条边上定义分数阶微分和包含系统,并研究葡萄糖分子图上的单值和多值-Hilfer型分数阶边值问题。一方面,利用几个不动点定理证明了单值情况下解的存在唯一性。另一方面,在多值情况下,考虑包含关系右侧具有凸值和非凸值。通过应用多值映射的Leray-Schauder非线性替代方法以及多值压缩映射的Covitz-Nadler不动点定理,分别得到了两个存在性结果。在此基础上,我们还得到了解集的拓扑结构,这对于葡萄糖图上的()-Hilfer分数阶微分包含关系来说是一项开创性的工作。最后,给出了几个例子来验证我们所提出结果的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/689b/11137396/1c0f05ebf753/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验