Diao Zhidian, Kan Lingyan, Zhao Yilong, Yang Huaibo, Song Jingyun, Wang Chen, Liu Yang, Zhang Fengli, Xu Teng, Chen Rongze, Ji Yuetong, Wang Xixian, Jing Xiaoyan, Xu Jian, Li Yuandong, Ma Bo
CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao China.
University of Chinese Academy of Sciences Beijing China.
mLife. 2022 Dec 18;1(4):448-459. doi: 10.1002/mlf2.12047. eCollection 2022 Dec.
Identification, sorting, and sequencing of individual cells directly from in situ samples have great potential for in-depth analysis of the structure and function of microbiomes. In this work, based on an artificial intelligence (AI)-assisted object detection model for cell phenotype screening and a cross-interface contact method for single-cell exporting, we developed an automatic and index-based system called EasySort AUTO, where individual microbial cells are sorted and then packaged in a microdroplet and automatically exported in a precisely indexed, "One-Cell-One-Tube" manner. The target cell is automatically identified based on an AI-assisted object detection model and then mobilized via an optical tweezer for sorting. Then, a cross-interface contact microfluidic printing method that we developed enables the automated transfer of cells from the chip to the tube, which leads to coupling with subsequent single-cell culture or sequencing. The efficiency of the system for single-cell printing is >93%. The throughput of the system for single-cell printing is ~120 cells/h. Moreover, >80% of single cells of both yeast and are culturable, suggesting the superior preservation of cell viability during sorting. Finally, AI-assisted object detection supports automated sorting of target cells with high accuracy from mixed yeast samples, which was validated by downstream single-cell proliferation assays. The automation, index maintenance, and vitality preservation of EasySort AUTO suggest its excellent application potential for single-cell sorting.
直接从原位样本中对单个细胞进行识别、分选和测序,在深入分析微生物群落的结构和功能方面具有巨大潜力。在这项工作中,基于用于细胞表型筛选的人工智能(AI)辅助目标检测模型和用于单细胞输出的跨界面接触方法,我们开发了一种名为EasySort AUTO的基于索引的自动化系统,其中单个微生物细胞被分选,然后封装在微滴中,并以精确索引的“单细胞一管”方式自动输出。基于AI辅助目标检测模型自动识别目标细胞,然后通过光镊进行分选。然后,我们开发的一种跨界面接触微流控打印方法能够将细胞从芯片自动转移到试管中,从而与后续的单细胞培养或测序相结合。该系统的单细胞打印效率>93%。该系统的单细胞打印通量约为120个细胞/小时。此外,酵母和大肠杆菌的单细胞中>80%可培养,这表明在分选过程中细胞活力得到了很好的保存。最后,AI辅助目标检测支持从混合酵母样本中高精度自动分选目标细胞,这通过下游单细胞增殖试验得到了验证。EasySort AUTO的自动化、索引维护和活力保存表明其在单细胞分选方面具有出色的应用潜力。