Suppr超能文献

基于连接组学的精神分裂症预测 - 使用结构连接的深度图神经网络(sc-DGNN)。

Connectome-based schizophrenia prediction using structural connectivity - Deep Graph Neural Network(sc-DGNN).

机构信息

School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India.

出版信息

J Xray Sci Technol. 2024;32(4):1041-1059. doi: 10.3233/XST-230426.

Abstract

BACKGROUND

Connectome is understanding the complex organization of the human brain's structural and functional connectivity is essential for gaining insights into cognitive processes and disorders.

OBJECTIVE

To improve the prediction accuracy of brain disorder issues, the current study investigates dysconnected subnetworks and graph structures associated with schizophrenia.

METHOD

By using the proposed structural connectivity-deep graph neural network (sc-DGNN) model and compared with machine learning (ML) and deep learning (DL) models.This work attempts to focus on eighty-eight subjects of diffusion magnetic resonance imaging (dMRI), three classical ML, and five DL models.

RESULT

The structural connectivity-deep graph neural network (sc-DGNN) model is proposed to effectively predict dysconnectedness associated with schizophrenia and exhibits superior performance compared to traditional ML and DL (GNNs) methods in terms of accuracy, sensitivity, specificity, precision, F1-score, and Area under receiver operating characteristic (AUC).

CONCLUSION

The classification task on schizophrenia using structural connectivity matrices and experimental results showed that linear discriminant analysis (LDA) performed 72% accuracy rate in ML models and sc-DGNN performed at a 93% accuracy rate in DL models to distinguish between schizophrenia and healthy patients.

摘要

背景

连接组学理解人类大脑结构和功能连接的复杂组织对于深入了解认知过程和障碍至关重要。

目的

为了提高大脑紊乱问题的预测准确性,本研究调查了与精神分裂症相关的不连贯子网和图结构。

方法

通过使用所提出的结构连接深度图神经网络 (sc-DGNN) 模型,并与机器学习 (ML) 和深度学习 (DL) 模型进行比较。本工作试图专注于 88 名扩散磁共振成像 (dMRI) 受试者、三个经典的 ML 和五个 DL 模型。

结果

提出了结构连接深度图神经网络 (sc-DGNN) 模型,以有效预测与精神分裂症相关的不连贯性,并在准确性、灵敏度、特异性、精度、F1 分数和接收者操作特征曲线 (ROC) 下面积 (AUC) 方面表现出优于传统 ML 和 DL (GNNs) 方法的性能。

结论

使用结构连接矩阵和实验结果对精神分裂症进行分类任务,线性判别分析 (LDA) 在 ML 模型中达到了 72%的准确率,而 sc-DGNN 在 DL 模型中达到了 93%的准确率,以区分精神分裂症患者和健康患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验