文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用全球 COVID-19 趋势和影响调查(CTIS)中的疫苗接种数据,探索各种估计量的大数据悖论。

Exploring the Big Data Paradox for various estimands using vaccination data from the global COVID-19 Trends and Impact Survey (CTIS).

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.

Biostatistics Innovation Group, Gilead Sciences, Foster City, CA, USA.

出版信息

Sci Adv. 2024 May 31;10(22):eadj0266. doi: 10.1126/sciadv.adj0266.


DOI:10.1126/sciadv.adj0266
PMID:38820165
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11314312/
Abstract

Selection bias poses a substantial challenge to valid statistical inference in nonprobability samples. This study compared estimates of the first-dose COVID-19 vaccination rates among Indian adults in 2021 from a large nonprobability sample, the COVID-19 Trends and Impact Survey (CTIS), and a small probability survey, the Center for Voting Options and Trends in Election Research (CVoter), against national benchmark data from the COVID Vaccine Intelligence Network. Notably, CTIS exhibits a larger estimation error on average (0.37) compared to CVoter (0.14). Additionally, we explored the accuracy (regarding mean squared error) of CTIS in estimating successive differences (over time) and subgroup differences (for females versus males) in mean vaccine uptakes. Compared to the overall vaccination rates, targeting these alternative estimands comparing differences or relative differences in two means increased the effective sample size. These results suggest that the Big Data Paradox can manifest in countries beyond the United States and may not apply equally to every estimand of interest.

摘要

选择偏差对非概率样本中有效的统计推断构成了重大挑战。本研究比较了来自大型非概率样本 COVID-19 趋势和影响调查(CTIS)和小概率调查选举研究投票选择和趋势中心(CVoter)的 2021 年印度成年人首剂 COVID-19 疫苗接种率的估计值与来自 COVID 疫苗智能网络的国家基准数据。值得注意的是,CTIS 的平均估计误差(0.37)明显大于 CVoter(0.14)。此外,我们还探讨了 CTIS 在估计连续差异(随时间推移)和亚组差异(女性与男性)方面的准确性(关于均方误差)。与总体疫苗接种率相比,针对这些替代估计值,比较两个平均值之间的差异或相对差异会增加有效样本量。这些结果表明,大数据悖论可能在美国以外的国家表现出来,并且可能不适用于每个感兴趣的估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/18309764a970/sciadv.adj0266-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/f94f570abe10/sciadv.adj0266-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/5e37f4a871de/sciadv.adj0266-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/3d7d503e19b4/sciadv.adj0266-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/fa1045f830cf/sciadv.adj0266-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/70b9caed0f92/sciadv.adj0266-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/18309764a970/sciadv.adj0266-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/f94f570abe10/sciadv.adj0266-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/5e37f4a871de/sciadv.adj0266-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/3d7d503e19b4/sciadv.adj0266-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/fa1045f830cf/sciadv.adj0266-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/70b9caed0f92/sciadv.adj0266-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daaa/11314312/18309764a970/sciadv.adj0266-f6.jpg

相似文献

[1]
Exploring the Big Data Paradox for various estimands using vaccination data from the global COVID-19 Trends and Impact Survey (CTIS).

Sci Adv. 2024-5-31

[2]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[3]
Immunogenicity and seroefficacy of pneumococcal conjugate vaccines: a systematic review and network meta-analysis.

Health Technol Assess. 2024-7

[4]
Non-pharmacological measures implemented in the setting of long-term care facilities to prevent SARS-CoV-2 infections and their consequences: a rapid review.

Cochrane Database Syst Rev. 2021-9-15

[5]
COVID-19 severity and risk of SARS-CoV-2-associated asthma exacerbation by time since booster vaccination: a longitudinal analysis of data from the COVIDENCE UK study.

BMJ Open Respir Res. 2025-5-15

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
Exploring the effect of COVID-19 restrictions on the social functioning scale in a clinical trial of antipsychotic reduction: using multiple imputation to target a hypothetical estimand.

J Clin Epidemiol. 2025-6

[8]
Association between inactivated COVID-19 vaccine and semen quality among males recovered from omicron infection: a retrospective cohort study.

Expert Rev Clin Immunol. 2025-6

[9]
SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19.

Cochrane Database Syst Rev. 2021-9-2

[10]
The attitude of the unvaccinated children's parents toward pediatric COVID-19 vaccination in Tabriz, Iran.

BMC Pediatr. 2025-3-28

引用本文的文献

[1]
The role of financial stress, food insecurity, and COVID-19-related illness concerns shaping mental health in five South Asian countries during the pandemic (2020-2022): A secondary analysis of the online COVID-19 Trends and Impact Survey (CTIS) data.

PLOS Glob Public Health. 2025-8-8

[2]
Artificial intelligence for modelling infectious disease epidemics.

Nature. 2025-2

[3]
Real World Data Versus Probability Surveys for Estimating Health Conditions at the State Level.

J Surv Stat Methodol. 2024-11

[4]
Impact of pandemic-related worries on mental health in India from 2020 to 2022.

Npj Ment Health Res. 2024-11-24

本文引用的文献

[1]
ADDRESSING SELECTION BIAS AND MEASUREMENT ERROR IN COVID-19 CASE COUNT DATA USING AUXILIARY INFORMATION.

Ann Appl Stat. 2023-12

[2]
Teachers' Mental Health During the COVID-19 Pandemic.

Educ Res. 2022-12

[3]
The importance of investing in data, models, experiments, team science, and public trust to help policymakers prepare for the next pandemic.

PLOS Glob Public Health. 2023-11-30

[4]
Unraveling attributes of COVID-19 vaccine acceptance and uptake in the U.S.: a large nationwide study.

Sci Rep. 2023-5-24

[5]
Leveraging 13 million responses to the U.S. COVID-19 Trends and Impact Survey to examine vaccine hesitancy, vaccination, and mask wearing, January 2021-February 2022.

BMC Public Health. 2022-10-13

[6]
Are Fear of COVID-19 and Vaccine Hesitancy Associated with COVID-19 Vaccine Uptake? A Population-Based Online Survey in Nigeria.

Vaccines (Basel). 2022-8-7

[7]
Shifting gender barriers in immunisation in the COVID-19 pandemic response and beyond.

Lancet. 2022-7-2

[8]
Disparities in COVID-19 Vaccination Coverage Between Urban and Rural Counties - United States, December 14, 2020-January 31, 2022.

MMWR Morb Mortal Wkly Rep. 2022-3-4

[9]
COVID-19 Vaccination Coverage and Vaccine Confidence by Sexual Orientation and Gender Identity - United States, August 29-October 30, 2021.

MMWR Morb Mortal Wkly Rep. 2022-2-4

[10]
Self-reported COVID-19 vaccine hesitancy and uptake among participants from different racial and ethnic groups in the United States and United Kingdom.

Nat Commun. 2022-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索