Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel.
The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
PLoS One. 2024 May 31;19(5):e0297244. doi: 10.1371/journal.pone.0297244. eCollection 2024.
Quantitative MRI (qMRI) has been shown to be clinically useful for numerous applications in the brain and body. The development of rapid, accurate, and reproducible qMRI techniques offers access to new multiparametric data, which can provide a comprehensive view of tissue pathology. This work introduces a multiparametric qMRI protocol along with full postprocessing pipelines, optimized for brain imaging at 3 Tesla and using state-of-the-art qMRI tools. The total scan time is under 50 minutes and includes eight pulse-sequences, which produce range of quantitative maps including T1, T2, and T2* relaxation times, magnetic susceptibility, water and macromolecular tissue fractions, mean diffusivity and fractional anisotropy, magnetization transfer ratio (MTR), and inhomogeneous MTR. Practical tips and limitations of using the protocol are also provided and discussed. Application of the protocol is presented on a cohort of 28 healthy volunteers and 12 brain regions-of-interest (ROIs). Quantitative values agreed with previously reported values. Statistical analysis revealed low variability of qMRI parameters across subjects, which, compared to intra-ROI variability, was x4.1 ± 0.9 times higher on average. Significant and positive linear relationship was found between right and left hemispheres' values for all parameters and ROIs with Pearson correlation coefficients of r>0.89 (P<0.001), and mean slope of 0.95 ± 0.04. Finally, scan-rescan stability demonstrated high reproducibility of the measured parameters across ROIs and volunteers, with close-to-zero mean difference and without correlation between the mean and difference values (across map types, mean P value was 0.48 ± 0.27). The entire quantitative data and postprocessing scripts described in the manuscript are publicly available under dedicated GitHub and Figshare repositories. The quantitative maps produced by the presented protocol can promote longitudinal and multi-center studies, and improve the biological interpretability of qMRI by integrating multiple metrics that can reveal information, which is not apparent when examined using only a single contrast mechanism.
定量磁共振成像(qMRI)已被证明在大脑和身体的许多应用中具有临床价值。快速、准确和可重复的 qMRI 技术的发展为新的多参数数据提供了访问途径,这些数据可以提供组织病理学的综合视图。本工作介绍了一种多参数 qMRI 方案以及完整的后处理管道,该方案针对 3T 脑部成像进行了优化,并使用了最先进的 qMRI 工具。总扫描时间不到 50 分钟,包括 8 个脉冲序列,可生成一系列定量图谱,包括 T1、T2 和 T2*弛豫时间、磁化率、水和大分子组织分数、平均扩散系数和各向异性分数、磁化传递比(MTR)和不均匀 MTR。还提供并讨论了使用该方案的实用技巧和限制。该方案的应用在 28 名健康志愿者和 12 个脑感兴趣区(ROI)上进行了展示。定量值与以前报道的值一致。统计分析显示,qMRI 参数在受试者之间的变异性较低,与 ROI 内变异性相比,平均高 4.1 ± 0.9 倍。对于所有参数和 ROI,发现右半球和左半球之间存在显著的正线性关系,皮尔逊相关系数 r>0.89(P<0.001),平均斜率为 0.95 ± 0.04。最后,扫描-重扫稳定性表明,所测量参数在 ROI 和志愿者之间具有很高的可重复性,平均差值接近零,且平均差值之间没有相关性(在所有图谱类型中,平均 P 值为 0.48 ± 0.27)。本文档中描述的整个定量数据和后处理脚本可在专用的 GitHub 和 Figshare 存储库中公开获取。所提出方案生成的定量图谱可以促进纵向和多中心研究,并通过整合多个可以揭示信息的指标来提高 qMRI 的生物学可解释性,而这些信息仅使用单一对比机制是无法明显得出的。