From the Department of Radiology, Boston University, 670 Albany St, Boston, Mass 02118 (H.J., O.S.); Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, Jülich, Germany (E.F., A.M.O.P., N.J.S.); Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass (D.C.A.); and Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colo (K.E.K.).
Radiology. 2022 Oct;305(1):5-18. doi: 10.1148/radiol.211519. Epub 2022 Aug 30.
This review on brain multiparametric quantitative MRI (MP-qMRI) focuses on the primary subset of quantitative MRI (qMRI) parameters that represent the mobile ("free") and bound ("motion-restricted") proton pools. Such primary parameters are the proton densities, relaxation times, and magnetization transfer parameters. Diffusion qMRI is also included because of its wide implementation in complete clinical MP-qMRI application. MP-qMRI advances were reviewed over the past 2 decades, with substantial progress observed toward accelerating image acquisition and increasing mapping accuracy. Areas that need further investigation and refinement are identified as follows: the biologic underpinnings of qMRI parameter values and their changes with age and/or disease and the theoretical limitations implicitly built into most qMRI mapping algorithms that do not distinguish between the different spatial scales of voxels versus spin packets, the central physical object of the Bloch theory. With rapidly improving image processing techniques and continuous advances in computer hardware, MP-qMRI has the potential for implementation in a wide range of clinical applications. Currently, three emerging MP-qMRI applications are synthetic MRI, macrostructural qMRI, and microstructural tissue modeling.
这篇关于脑多参数定量磁共振成像(MP-qMRI)的综述重点介绍了代表移动(“自由”)和束缚(“运动受限”)质子池的主要定量磁共振成像(qMRI)参数子集。这些主要参数包括质子密度、弛豫时间和磁化传递参数。由于其在完整的临床 MP-qMRI 应用中广泛实施,扩散 qMRI 也包括在内。回顾了过去 20 年来的 MP-qMRI 进展,在加速图像采集和提高映射精度方面取得了实质性进展。需要进一步研究和改进的领域如下:qMRI 参数值的生物学基础及其随年龄和/或疾病的变化,以及大多数 qMRI 映射算法中隐含的理论限制,这些算法无法区分体素与自旋包之间的不同空间尺度,自旋包是布洛赫理论的核心物理对象。随着图像处理技术的快速发展和计算机硬件的不断进步,MP-qMRI 有可能在广泛的临床应用中得到实施。目前,三种新兴的 MP-qMRI 应用是合成磁共振成像、宏观结构 qMRI 和微观结构组织建模。