Suppr超能文献

基于超声的人工智能预测乳腺癌关键分子标志物的诊断性能:系统评价和荟萃分析。

Diagnostic performance of ultrasound-based artificial intelligence for predicting key molecular markers in breast cancer: A systematic review and meta-analysis.

机构信息

Department of Ultrasound, Dianjiang People's Hospital of Chongqing, Chongqing, China.

Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China.

出版信息

PLoS One. 2024 May 31;19(5):e0303669. doi: 10.1371/journal.pone.0303669. eCollection 2024.

Abstract

BACKGROUND

Breast cancer (BC) diagnosis and treatment rely heavily on molecular markers such as HER2, Ki67, PR, and ER. Currently, these markers are identified by invasive methods.

OBJECTIVE

This meta-analysis investigates the diagnostic accuracy of ultrasound-based radiomics as a novel approach to predicting these markers.

METHODS

A comprehensive search of PubMed, EMBASE, and Web of Science databases was conducted to identify studies evaluating ultrasound-based radiomics in BC. Inclusion criteria encompassed research on HER2, Ki67, PR, and ER as key molecular markers. Quality assessment using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS) was performed. The data extraction step was performed systematically.

RESULTS

Our meta-analysis quantifies the diagnostic accuracy of ultrasound-based radiomics with a sensitivity and specificity of 0.76 and 0.78 for predicting HER2, 0.80, and 0.76 for Ki67 biomarkers. Studies did not provide sufficient data for quantitative PR and ER prediction analysis. The overall quality of studies based on the RQS tool was moderate. The QUADAS-2 evaluation showed that the studies had an unclear risk of bias regarding the flow and timing domain.

CONCLUSION

Our analysis indicated that AI models have a promising accuracy for predicting key molecular biomarkers' status in BC patients. We performed the quantitative analysis for HER2 and Ki67 biomarkers which yielded a moderate to high accuracy. However, studies did not provide adequate data for meta-analysis of ER and PR prediction accuracy of developed models. The overall quality of the studies was acceptable. In future research, studies need to report the results thoroughly. Also, we suggest more prospective studies from different centers.

摘要

背景

乳腺癌(BC)的诊断和治疗严重依赖于 HER2、Ki67、PR 和 ER 等分子标志物。目前,这些标志物是通过有创方法确定的。

目的

本荟萃分析研究了基于超声的放射组学作为预测这些标志物的新方法的诊断准确性。

方法

对 PubMed、EMBASE 和 Web of Science 数据库进行全面检索,以确定评估 BC 中基于超声的放射组学的研究。纳入标准包括 HER2、Ki67、PR 和 ER 作为关键分子标志物的研究。使用诊断准确性研究的质量评估(QUADAS-2)和放射组学质量评分(RQS)进行质量评估。系统地进行了数据提取步骤。

结果

我们的荟萃分析量化了基于超声的放射组学的诊断准确性,预测 HER2 的灵敏度和特异性分别为 0.76 和 0.78,预测 Ki67 生物标志物的灵敏度和特异性分别为 0.80 和 0.76。研究没有提供足够的数据进行 PR 和 ER 预测分析的定量分析。基于 RQS 工具的研究整体质量为中等。QUADAS-2 评估表明,研究在流程和时间域存在不明确的偏倚风险。

结论

我们的分析表明,人工智能模型对预测 BC 患者关键分子标志物状态具有良好的准确性。我们对 HER2 和 Ki67 生物标志物进行了定量分析,其准确性为中等到高。然而,研究没有提供足够的数据进行开发模型的 ER 和 PR 预测准确性的荟萃分析。研究的整体质量是可以接受的。在未来的研究中,研究需要更全面地报告结果。此外,我们建议来自不同中心的更多前瞻性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1073/11142607/ef521e790e00/pone.0303669.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验