Suppr超能文献

联合传统超声与超声弹性成像预测乳腺癌患者的人表皮生长因子受体2(HER2)状态

Combining conventional ultrasound and ultrasound elastography to predict HER2 status in patients with breast cancer.

作者信息

Zhuo Xiaoying, Lv Ji, Chen Binjie, Liu Jia, Luo Yujie, Liu Jie, Xie Xiaowei, Lu Jiao, Zhao Ningjun

机构信息

Ultrasound Medicine Department of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.

Medical Imaging College of Xuzhou Medical University, Xuzhou, China.

出版信息

Front Physiol. 2023 Jul 12;14:1188502. doi: 10.3389/fphys.2023.1188502. eCollection 2023.

Abstract

Identifying the HER2 status of breast cancer patients is important for treatment options. Previous studies have shown that ultrasound features are closely related to the subtype of breast cancer. In this study, we used features of conventional ultrasound and ultrasound elastography to predict HER2 status. The performance of model (AUROC) with features of conventional ultrasound and ultrasound elastography is higher than that of the model with features of conventional ultrasound (0.82 vs. 0.53). The SHAP method was used to explore the interpretability of the models. Compared with HER2- tumors, HER2+ tumors usually have greater elastic modulus parameters and microcalcifications. Therefore, we concluded that the features of conventional ultrasound combined with ultrasound elastography could improve the accuracy for predicting HER2 status.

摘要

确定乳腺癌患者的HER2状态对于治疗方案的选择很重要。先前的研究表明,超声特征与乳腺癌的亚型密切相关。在本研究中,我们使用传统超声和超声弹性成像的特征来预测HER2状态。具有传统超声和超声弹性成像特征的模型(AUROC)的性能高于具有传统超声特征的模型(0.82对0.53)。使用SHAP方法来探索模型的可解释性。与HER2-肿瘤相比,HER2+肿瘤通常具有更大的弹性模量参数和微钙化。因此,我们得出结论,传统超声与超声弹性成像相结合的特征可以提高预测HER2状态的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d42b/10369848/4f0377d2f324/fphys-14-1188502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验