Suppr超能文献

从空间自相关函数推导出关联维数。

Derivation of correlation dimension from spatial autocorrelation functions.

机构信息

Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing, PRC.

出版信息

PLoS One. 2024 May 31;19(5):e0303212. doi: 10.1371/journal.pone.0303212. eCollection 2024.

Abstract

BACKGROUND

Spatial complexity is always associated with spatial autocorrelation. Spatial autocorrelation coefficients including Moran's index proved to be an eigenvalue of the spatial correlation matrixes. An eigenvalue represents a kind of characteristic length for quantitative analysis. However, if a spatial correlation process is based on self-organized evolution, complex structure, and the distributions without characteristic scale, the eigenvalue will be ineffective. In this case, a scaling exponent such as fractal dimension can be used to compensate for the shortcoming of characteristic length parameters such as Moran's index.

METHOD

This paper is devoted to finding an intrinsic relationship between Moran's index and fractal dimension by means of spatial correlation modeling. Using relative step function as spatial contiguity function, we can convert spatial autocorrelation coefficients into spatial autocorrelation functions.

RESULT

By decomposition of spatial autocorrelation functions, we can derive the relation between spatial correlation dimension and spatial autocorrelation functions. As results, a series of useful mathematical models are constructed, including the functional relation between Moran's index and fractal parameters. Correlation dimension proved to be a scaling exponent in the spatial correlation equation based on Moran's index. As for empirical analysis, the scaling exponent of spatial autocorrelation of Chinese cities is Dc = 1.3623±0.0358, which is equal to the spatial correlation dimension of the same urban system, D2. The goodness of fit is about R2 = 0.9965. This fractal parameter value suggests weak spatial autocorrelation of Chinese cities.

CONCLUSION

A conclusion can be drawn that we can utilize spatial correlation dimension to make deep spatial autocorrelation analysis, and employ spatial autocorrelation functions to make complex spatial autocorrelation analysis. This study reveals the inherent association of fractal patterns with spatial autocorrelation processes. The work may inspire new ideas for spatial modeling and exploration of complex systems such as cities.

摘要

背景

空间复杂性总是与空间自相关相关联。空间自相关系数包括 Moran 指数,被证明是空间相关矩阵的特征值。特征值代表定量分析的一种特征长度。然而,如果空间相关过程基于自组织演化、复杂结构和没有特征尺度的分布,那么特征值将是无效的。在这种情况下,可以使用分形维数等标度指数来弥补 Moran 指数等特征长度参数的不足。

方法

本文通过空间相关建模,致力于寻找 Moran 指数与分形维数之间的内在关系。利用相对步长函数作为空间连续性函数,可以将空间自相关系数转换为空间自相关函数。

结果

通过空间自相关函数的分解,可以推导出空间相关维数与空间自相关函数之间的关系。结果构建了一系列有用的数学模型,包括 Moran 指数与分形参数之间的函数关系。相关维数被证明是基于 Moran 指数的空间相关方程中的标度指数。对于实证分析,中国城市空间自相关的标度指数 Dc = 1.3623±0.0358,与同一城市系统的空间相关维数 D2 相等。拟合优度约为 R2 = 0.9965。该分形参数值表明中国城市的空间自相关性较弱。

结论

可以得出结论,我们可以利用空间相关维数进行深入的空间自相关分析,利用空间自相关函数进行复杂的空间自相关分析。本研究揭示了分形模式与空间自相关过程之间的内在联系。这项工作可能为城市等复杂系统的空间建模和探索提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15df/11142504/8d70c91ee705/pone.0303212.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验