Suppr超能文献

视觉皮层模型对分布外样本的泛化能力如何?

How well do models of visual cortex generalize to out of distribution samples?

机构信息

Department of Computer Science, McGill University, Montreal, Canada.

Department of Computer Physiology, McGill University, Montreal, Canada.

出版信息

PLoS Comput Biol. 2024 May 31;20(5):e1011145. doi: 10.1371/journal.pcbi.1011145. eCollection 2024 May.

Abstract

Unit activity in particular deep neural networks (DNNs) are remarkably similar to the neuronal population responses to static images along the primate ventral visual cortex. Linear combinations of DNN unit activities are widely used to build predictive models of neuronal activity in the visual cortex. Nevertheless, prediction performance in these models is often investigated on stimulus sets consisting of everyday objects under naturalistic settings. Recent work has revealed a generalization gap in how predicting neuronal responses to synthetically generated out-of-distribution (OOD) stimuli. Here, we investigated how the recent progress in improving DNNs' object recognition generalization, as well as various DNN design choices such as architecture, learning algorithm, and datasets have impacted the generalization gap in neural predictivity. We came to a surprising conclusion that the performance on none of the common computer vision OOD object recognition benchmarks is predictive of OOD neural predictivity performance. Furthermore, we found that adversarially robust models often yield substantially higher generalization in neural predictivity, although the degree of robustness itself was not predictive of neural predictivity score. These results suggest that improving object recognition behavior on current benchmarks alone may not lead to more general models of neurons in the primate ventral visual cortex.

摘要

特定单元的活动,尤其是深度神经网络(DNN),与灵长类动物腹侧视觉皮层对静态图像的神经元群体反应非常相似。DNN 单元活动的线性组合被广泛用于构建视觉皮层神经元活动的预测模型。然而,这些模型中的预测性能通常是在由自然环境下的日常物体组成的刺激集上进行研究的。最近的研究揭示了在预测人工合成的分布外(OOD)刺激时,神经元反应的泛化差距。在这里,我们研究了改进 DNN 对物体识别的泛化能力的最新进展,以及各种 DNN 设计选择,如架构、学习算法和数据集,如何影响神经预测的泛化差距。我们得出了一个令人惊讶的结论,即在任何常见的计算机视觉 OOD 物体识别基准上的性能都不能预测 OOD 神经预测性能。此外,我们发现,对抗稳健的模型通常在神经预测方面产生更高的泛化能力,尽管稳健性本身的程度并不能预测神经预测得分。这些结果表明,仅提高当前基准上的物体识别行为可能不会导致灵长类动物腹侧视觉皮层中更通用的神经元模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8478/11216589/b1e0973c0d90/pcbi.1011145.g001.jpg

相似文献

1
How well do models of visual cortex generalize to out of distribution samples?
PLoS Comput Biol. 2024 May 31;20(5):e1011145. doi: 10.1371/journal.pcbi.1011145. eCollection 2024 May.
3
Three approaches to facilitate invariant neurons and generalization to out-of-distribution orientations and illuminations.
Neural Netw. 2022 Nov;155:119-143. doi: 10.1016/j.neunet.2022.07.026. Epub 2022 Jul 30.
4
Deep neural networks rival the representation of primate IT cortex for core visual object recognition.
PLoS Comput Biol. 2014 Dec 18;10(12):e1003963. doi: 10.1371/journal.pcbi.1003963. eCollection 2014 Dec.
5
Performance-optimized hierarchical models predict neural responses in higher visual cortex.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8619-24. doi: 10.1073/pnas.1403112111. Epub 2014 May 8.
6
Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
PLoS Biol. 2021 Dec 9;19(12):e3001418. doi: 10.1371/journal.pbio.3001418. eCollection 2021 Dec.
7
An ecologically motivated image dataset for deep learning yields better models of human vision.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2011417118.
8
Invariant recognition drives neural representations of action sequences.
PLoS Comput Biol. 2017 Dec 18;13(12):e1005859. doi: 10.1371/journal.pcbi.1005859. eCollection 2017 Dec.
9
Deep convolutional models improve predictions of macaque V1 responses to natural images.
PLoS Comput Biol. 2019 Apr 23;15(4):e1006897. doi: 10.1371/journal.pcbi.1006897. eCollection 2019 Apr.

引用本文的文献

本文引用的文献

1
Diverse task-driven modeling of macaque V4 reveals functional specialization towards semantic tasks.
PLoS Comput Biol. 2024 May 23;20(5):e1012056. doi: 10.1371/journal.pcbi.1012056. eCollection 2024 May.
2
Brain-like functional specialization emerges spontaneously in deep neural networks.
Sci Adv. 2022 Mar 18;8(11):eabl8913. doi: 10.1126/sciadv.abl8913. Epub 2022 Mar 16.
3
Increasing neural network robustness improves match to macaque V1 eigenspectrum, spatial frequency preference and predictivity.
PLoS Comput Biol. 2022 Jan 7;18(1):e1009739. doi: 10.1371/journal.pcbi.1009739. eCollection 2022 Jan.
4
Computational models of category-selective brain regions enable high-throughput tests of selectivity.
Nat Commun. 2021 Sep 20;12(1):5540. doi: 10.1038/s41467-021-25409-6.
5
Single cortical neurons as deep artificial neural networks.
Neuron. 2021 Sep 1;109(17):2727-2739.e3. doi: 10.1016/j.neuron.2021.07.002. Epub 2021 Aug 10.
6
An ecologically motivated image dataset for deep learning yields better models of human vision.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2011417118.
7
Unsupervised neural network models of the ventral visual stream.
Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2014196118.
8
Controversial stimuli: Pitting neural networks against each other as models of human cognition.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29330-29337. doi: 10.1073/pnas.1912334117.
9
Inception loops discover what excites neurons most using deep predictive models.
Nat Neurosci. 2019 Dec;22(12):2060-2065. doi: 10.1038/s41593-019-0517-x. Epub 2019 Nov 4.
10
A deep learning framework for neuroscience.
Nat Neurosci. 2019 Nov;22(11):1761-1770. doi: 10.1038/s41593-019-0520-2. Epub 2019 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验