Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
Nat Neurosci. 2019 Dec;22(12):2060-2065. doi: 10.1038/s41593-019-0517-x. Epub 2019 Nov 4.
Finding sensory stimuli that drive neurons optimally is central to understanding information processing in the brain. However, optimizing sensory input is difficult due to the predominantly nonlinear nature of sensory processing and high dimensionality of the input. We developed 'inception loops', a closed-loop experimental paradigm combining in vivo recordings from thousands of neurons with in silico nonlinear response modeling. Our end-to-end trained, deep-learning-based model predicted thousands of neuronal responses to arbitrary, new natural input with high accuracy and was used to synthesize optimal stimuli-most exciting inputs (MEIs). For mouse primary visual cortex (V1), MEIs exhibited complex spatial features that occurred frequently in natural scenes but deviated strikingly from the common notion that Gabor-like stimuli are optimal for V1. When presented back to the same neurons in vivo, MEIs drove responses significantly better than control stimuli. Inception loops represent a widely applicable technique for dissecting the neural mechanisms of sensation.
发现能最优驱动神经元的感觉刺激是理解大脑信息处理的核心。然而,由于感觉处理主要是非线性的,以及输入具有高度的多维性,因此优化感觉输入是很困难的。我们开发了“inception 循环”,这是一种结合了来自数千个神经元的体内记录和体内非线性响应建模的闭环实验范例。我们基于深度学习的端到端训练模型可以高精度地预测数千个神经元对任意新自然输入的反应,并且用于合成最优刺激——最令人兴奋的输入(MEI)。对于小鼠初级视觉皮层(V1),MEI 表现出复杂的空间特征,这些特征在自然场景中经常出现,但与常见的观点——即 Gabor 样刺激对 V1 是最优的——形成鲜明对比。当将 MEI 以体内相同的神经元呈现时,其驱动反应的效果明显优于对照刺激。inception 循环代表了一种广泛适用的技术,可以用于剖析感觉的神经机制。