Suppr超能文献

新型算法在回顾性系列中的应用,实现了子宫内膜癌的分子分类。

Application of novel algorithm on a retrospective series to implement the molecular classification for endometrial cancer.

机构信息

Clinic of Obstetrics and Gynecology, "Santa Maria della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy.

Clinic of Obstetrics and Gynecology, "Santa Maria della Misericordia" University Hospital, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy; Department of Medicine (DMED), University of Udine, Udine, Italy.

出版信息

Eur J Surg Oncol. 2024 Jul;50(7):108436. doi: 10.1016/j.ejso.2024.108436. Epub 2024 May 23.

Abstract

INTRODUCTION

The study aimed to validate the Betella algorithm, focusing on molecular analyses exclusively for endometrial cancer patients, where molecular classification alters risk assessment based on ESGO/ESTRO/ESP 2020 guidelines.

MATERIALS AND METHODS

Conducted between March 2021 and March 2023, the retrospective research involved endometrial cancer patients undergoing surgery and comprehensive molecular analyses. These included p53 and mismatch repair proteins immunohistochemistry, as well as DNA sequencing for POLE exonuclease domain. We applied the Betella algorithm to our population and evaluated the proportion of patients in which the molecular analysis changed the risk class attribution.

RESULTS

Out of 102 patients, 97 % obtained complete molecular analyses. The cohort exhibited varying molecular classifications: 10.1 % as POLE ultra-mutated, 30.3 % as mismatch repair deficient, 11.1 % as p53 abnormal, and 48.5 % as non-specified molecular classification. Multiple classifiers were present in 3 % of cases. Integrating molecular classification into risk group calculation led to risk group migration in 11.1 % of patients: 7 moved to lower risk classes due to POLE mutations, while 4 shifted to higher risk due to p53 alterations. Applying the Betella algorithm, we can spare the POLE sequencing in 65 cases (65.7 %) and p53 immunochemistry in 17 cases (17.2 %).

CONCLUSION

In conclusion, we externally validated the Betella algorithm in our population. The application of this new proposed algorithm enables assignment of the proper risk class and, consequently, the appropriate indication for adjuvant treatment, allowing for the rationalization of the resources that can be allocated otherwise, not only for the benefit of settings with low resources, but of all settings in general.

摘要

介绍

本研究旨在验证贝特拉算法,该算法专注于子宫内膜癌患者的分子分析,其中分子分类根据 ESGO/ESTRO/ESP 2020 指南改变风险评估。

材料和方法

本回顾性研究于 2021 年 3 月至 2023 年 3 月进行,纳入接受手术和全面分子分析的子宫内膜癌患者。这些分析包括 p53 和错配修复蛋白免疫组化,以及 POLE 外切酶结构域的 DNA 测序。我们将贝特拉算法应用于我们的人群,并评估分子分析改变风险分类归属的患者比例。

结果

102 例患者中,97%获得了完整的分子分析。该队列表现出不同的分子分类:10.1%为 POLE 超高突变型,30.3%为错配修复缺陷型,11.1%为 p53 异常型,48.5%为非特定分子分类。3%的病例存在多种分类器。将分子分类纳入风险组计算导致 11.1%的患者风险组迁移:7 例因 POLE 突变转移到低风险组,4 例因 p53 改变转移到高风险组。应用贝特拉算法,我们可以在 65 例(65.7%)患者中省去 POLE 测序,在 17 例(17.2%)患者中省去 p53 免疫组化。

结论

总之,我们在本研究人群中对贝特拉算法进行了外部验证。该新算法的应用能够确定适当的风险分类,从而为辅助治疗提供适当的指征,从而合理分配可能分配的资源,不仅有利于资源匮乏的环境,而且有利于一般环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验