Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium.
Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
Mutat Res Genet Toxicol Environ Mutagen. 2024 May-Jun;896:503764. doi: 10.1016/j.mrgentox.2024.503764. Epub 2024 May 9.
Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, may be a natural physiological condition or pathophysiological such as in cancer cells or stress induced tetraploidisation. Its contribution to cancer development is well known. However, among the many models proposed to explain the causes, mechanisms and steps of malignant cell transformation, only few integrate tetraploidization into a systemic multistep approach of carcinogenesis. Therefore, we will i) describe the molecular and cellular characteristics of tetraploidy; ii) assess the contribution of stress-induced tetraploidy in cancer development; iii) situate tetraploidy as a metastable state leading to cancer development in a systemic cell-centered approach; iiii) consider knowledge gaps and future perspectives. The available data shows that stress-induced tetraploidisation/polyploidisation leads to p53 stabilisation, cell cycle arrest, followed by cellular senescence or apoptosis, suppressing the proliferation of tetraploid cells. However, if tetraploid cells escape the G1-tetraploidy checkpoint, it may lead to uncontrolled proliferation of tetraploid cells, micronuclei induction, aneuploidy and deploidisation. In addition, tetraploidization favors 3D-chromatin changes and epigenetic effects. The combined effects of genetic and epigenetic changes allow the expression of oncogenic gene expression and cancer progression. Moreover, since micronuclei are inducing inflammation, which in turn may induce additional tetraploidization, tetraploidy-derived genetic instability leads to a carcinogenic vicious cycle. The concept that polyploid cells are metastable intermediates between diploidy and aneuploidy is not new. Metastability denotes an intermediate energetic state within a dynamic system other than the system's state at least energy. Considering in parallel the genetic/epigenetic changes and the probable entropy levels induced by stress-induced tetraploidisation provides a new systemic approach to describe cancer development.
四倍体,即一个细胞具有四套同源染色体的状态,可能是一种自然的生理状态,也可能是病理生理状态,如癌细胞或应激诱导的四倍体化。它对癌症发展的贡献是众所周知的。然而,在众多被提出的解释恶性细胞转化的原因、机制和步骤的模型中,只有少数将四倍体化纳入癌症发生的系统多步骤方法中。因此,我们将:i)描述四倍体的分子和细胞特征;ii)评估应激诱导的四倍体化在癌症发展中的贡献;iii)将四倍体化置于一个系统的以细胞为中心的方法中,作为导致癌症发展的亚稳态;iiii)考虑知识空白和未来展望。现有数据表明,应激诱导的四倍体化/多倍体化导致 p53 稳定化、细胞周期停滞,随后发生细胞衰老或凋亡,抑制四倍体细胞的增殖。然而,如果四倍体细胞逃脱 G1-四倍体检查点,可能导致四倍体细胞不受控制的增殖、微核诱导、非整倍体和去整倍体化。此外,四倍体化有利于 3D 染色质变化和表观遗传效应。遗传和表观遗传变化的综合作用允许致癌基因表达和癌症进展。此外,由于微核诱导炎症,反过来又可能诱导额外的四倍体化,四倍体遗传不稳定性导致致癌恶性循环。多倍体细胞是二倍体和非整倍体之间的亚稳中间产物的概念并不新鲜。亚稳性表示动态系统中的中间能量状态,而不是系统的至少能量状态。同时考虑应激诱导的四倍体化所诱导的遗传/表观遗传变化和可能的熵水平,为描述癌症发展提供了一种新的系统方法。
Mutat Res Genet Toxicol Environ Mutagen. 2024
Cancer Sci. 2018-7-26
Mol Oncol. 2011-7-30
PLoS One. 2014-11-7
Ecotoxicol Environ Saf. 2023-5
Cell Death Differ. 2010-11-12