Suppr超能文献

一项评估PSMA PET/CT在前列腺癌初始分期中诊断准确性的系统评价和荟萃分析。

A systematic review and meta-analysis to evaluate the diagnostic accuracy of PSMA PET/CT in the initial staging of prostate cancer.

作者信息

Mari Andrea, Cadenar Anna, Giudici Sofia, Cianchi Gemma, Albisinni Simone, Autorino Riccardo, Di Maida Fabrizio, Gandaglia Giorgio, Mir M Carmen, Valerio Massimo, Marra Giancarlo, Zattoni Fabio, Bianchi Lorenzo, Lombardo Riccardo, Shariat Shahrokh F, Roupret Morgan, Bauckneht Matteo, Vaggelli Luca, De Nunzio Cosimo, Minervini Andrea

机构信息

Oncologic Minimally Invasive Urology and Andrology Unit, Department of Experimental and Clinical Medicine, Careggi Hospital, University of Florence, 50121, Florence, Italy.

Urology Unit, Department of Surgical Sciences, Tor Vergata University Hospital, University of Rome Tor Vergata, Rome, Italy.

出版信息

Prostate Cancer Prostatic Dis. 2025 Mar;28(1):56-69. doi: 10.1038/s41391-024-00850-y. Epub 2024 May 31.

Abstract

BACKGROUND

Positron Emission Tomography-Computed Tomography using Prostate-Specific Membrane Antigen (PSMA PET/CT) is notable for its superior sensitivity and specificity in detecting recurrent PCa and is under investigation for its potential in pre-treatment staging. Despite its established efficacy in nodal and metastasis staging in trial setting, its role in primary staging awaits fuller validation due to limited evidence on oncologic outcomes. This systematic review and meta-analysis aims to appraise the diagnostic accuracy of PSMA PET/CT compared to CI for comprehensive PCa staging.

METHODS

Medline, Scopus and Web of science databases were searched till March 2023. Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines were followed to identify eligible studies. Primary outcomes were specificity, sensitivity, positive predictive value (PPV) and negative predictive value (NPV) of PSMA PET/CT for local, nodal and metastatic staging in PCa patients. Due to the unavailability of data, a meta-analysis was feasible only for detection of seminal vesicles invasion (SVI) and LNI.

RESULTS

A total of 49 studies, comprising 3876 patients, were included. Of these, 6 investigated accuracy of PSMA PET/CT in detection of SVI. Pooled sensitivity, specificity, PPV and NPV were 42.29% (95%CI: 29.85-55.78%), 87.59% (95%CI: 77.10%-93.67%), 93.39% (95%CI: 74.95%-98.52%) and 86.60% (95%CI: 58.83%-96.69%), respectively. Heterogeneity analysis revealed significant variability for PPV and NPV. 18 studies investigated PSMA PET/CT accuracy in detection of LNI. Aggregate sensitivity, specificity, PPV and NPV were 43.63% (95%CI: 34.19-53.56%), 85.55% (95%CI: 75.95%-91.74%), 67.47% (95%CI: 52.42%-79.6%) and 83.61% (95%CI: 79.19%-87.24%). No significant heterogeneity was found between studies.

CONCLUSIONS

The present systematic review and meta-analysis highlights PSMA PET-CT effectiveness in detecting SVI and its good accuracy in LNI compared to CI. Nonetheless, it also reveals a lack of high-quality research on its performance in clinical T staging, extraprostatic extension and distant metastasis evaluation, emphasizing the need for further rigorous studies.

摘要

背景

使用前列腺特异性膜抗原的正电子发射断层扫描-计算机断层扫描(PSMA PET/CT)在检测复发性前列腺癌方面具有卓越的敏感性和特异性,其在治疗前分期中的潜力正在研究中。尽管在试验环境中其在淋巴结和转移分期方面已证实有效,但由于关于肿瘤学结局的证据有限,其在初始分期中的作用仍有待充分验证。本系统评价和荟萃分析旨在评估PSMA PET/CT与传统成像(CI)相比在前列腺癌综合分期中的诊断准确性。

方法

检索Medline、Scopus和科学网数据库至2023年3月。遵循系统评价和荟萃分析的首选报告项目(PRISMA)指南来识别符合条件的研究。主要结局是PSMA PET/CT在前列腺癌患者局部、淋巴结和转移分期中的特异性、敏感性、阳性预测值(PPV)和阴性预测值(NPV)。由于数据不可用,仅对精囊侵犯(SVI)和淋巴结转移(LNI)检测进行荟萃分析是可行的。

结果

共纳入49项研究,包括3876例患者。其中,6项研究调查了PSMA PET/CT检测SVI的准确性。合并敏感性、特异性、PPV和NPV分别为42.29%(95%CI:29.85 - 55.78%)、87.59%(95%CI:77.10% - 93.67%)、93.39%(95%CI:74.95% - 98.52%)和86.60%(95%CI:58.83% - 96.69%)。异质性分析显示PPV和NPV存在显著变异性。18项研究调查了PSMA PET/CT检测LNI的准确性。总体敏感性、特异性、PPV和NPV分别为43.63%(95%CI:34.19 - 53.56%)、85.55%(95%CI:75.95% - 91.74%)、67.47%(95%CI:52.42% - 79.6%)和83.61%(95%CI:79.19% - 87.24%)。研究之间未发现显著异质性。

结论

本系统评价和荟萃分析强调了PSMA PET-CT在检测SVI方面的有效性及其在LNI检测中与CI相比的良好准确性。尽管如此,它也揭示了在其临床T分期、前列腺外扩展和远处转移评估性能方面缺乏高质量研究,强调需要进一步进行严谨的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验