Suppr超能文献

用于预测前列腺癌ISUP分级组的基于端到端[F]PSMA - 1007 PET/CT影像组学的流程

End-to-end [F]PSMA-1007 PET/CT radiomics-based pipeline for predicting ISUP grade group in prostate cancer.

作者信息

Yang Fei, Wang Chenhao, Shen Jiale, Ren Yue, Yu Feng, Luo Wei, Su Xinhui

机构信息

Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.

College of Biomedical Engineering and Instrument Science, Zhejiang University, 38 Zheda Road, Hangzhou, 310007, People's Republic of China.

出版信息

Abdom Radiol (NY). 2025 Apr;50(4):1641-1652. doi: 10.1007/s00261-024-04601-4. Epub 2024 Sep 30.

Abstract

OBJECTIVES

To develop an end-to-end radiomics-based pipeline for the prediction of International Society of Urological Pathology grade group (ISUP GG) in prostate cancer (PCa).

METHODS

This retrospective study includes 356 patients (241 in training set and 115 in independent test set) with histopathologically confirmed PCa who underwent [F]PSMA-1007 PET/CT scan. Patients were classified into two groups according to their ISUP GG (1-3 vs. 4-5). Radiomics features were extracted from the whole, automatically segmented prostate on PET/CT images, 30 models were constructed by combining 6 feature selection algorithms and 5 machine learning classifiers. The clinical model incorporated age, total prostate-specific antigen (tPSA), maximum standardized uptake value (SUVmax), and prostate volume. The predictive performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC), balanced accuracy (bAcc), and decision curve analysis (DCA).

RESULTS

The best-performing radiomics model significantly outperformed clinical model (AUC 0.879 ± 0.041 vs. 0.799 ± 0.051, bAcc 0.745 ± 0.074 vs. 0.629 ± 0.045). On an external independent test set, best-performing radiomics model perform better than clinical model, with an AUC of 0.861 vs. 0.750, p = 0.002 (Delong), and bAcc of 0.764 vs. 0.582, p = 0.043 (McNemar). The learning curve, calibration curve and DCA demonstrated goodness-of-fit and improved benefits in clinical practice.

CONCLUSION

The end-to-end radiomics-based pipeline is an effective non-invasive tool to predict ISUP GG in PCa.

摘要

目的

开发一种基于放射组学的端到端流程,用于预测前列腺癌(PCa)的国际泌尿病理学会分级组(ISUP GG)。

方法

这项回顾性研究纳入了356例经组织病理学确诊为PCa且接受了[F]PSMA - 1007 PET/CT扫描的患者(训练集241例,独立测试集115例)。患者根据其ISUP GG分为两组(1 - 3级与4 - 5级)。从PET/CT图像上自动分割的整个前列腺中提取放射组学特征,通过结合6种特征选择算法和5种机器学习分类器构建了30个模型。临床模型纳入了年龄、总前列腺特异性抗原(tPSA)、最大标准化摄取值(SUVmax)和前列腺体积。使用受试者工作特征曲线下面积(AUC)、平衡准确度(bAcc)和决策曲线分析(DCA)评估模型的预测性能。

结果

表现最佳的放射组学模型显著优于临床模型(AUC:0.879±0.041对0.799±0.051,bAcc:0.745±0.074对0.629±0.045)。在外部独立测试集上,表现最佳的放射组学模型比临床模型表现更好,AUC为0.861对0.750,p = 0.002(德龙检验),bAcc为0.764对0.582,p = 0.043(麦克内马尔检验)。学习曲线、校准曲线和DCA显示了模型的拟合优度以及在临床实践中的改善效益。

结论

基于放射组学的端到端流程是预测PCa中ISUP GG的一种有效的非侵入性工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验