Tan Yuxin, Zhang Shirong, Liu Yilei, Li Jishun, Zhang Shenglan, Pan Hongcheng
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
Talanta. 2024 Sep 1;277:126332. doi: 10.1016/j.talanta.2024.126332. Epub 2024 May 28.
Cardiac troponin I (cTnI) is a critical biomarker for the diagnosis of acute myocardial infarction (AMI). Herein, we report a novel integrated lateral flow immunoassay (LFIA) platform for highly sensitive point-of-care testing (POCT) of cTnI using hierarchical dendritic copper-nickel (HD-nanoCu-Ni) nanostructures. The electrodeposited HD-nanoCu-Ni film (∼22 μm thick) on an ITO-coated glass substrate exhibits superior capillary action and structural integrity. These properties enable efficient sample transport and antibody immobilization, making it a compelling alternative to conventional multi-component paper-based LFIA test strips, which are often plagued by structural fragility and susceptibility to moisture damage. The biofunctionalized HD-nanoCu-Ni substrates were laser-etched with lateral flow channels, including a sample loading/conjugate release zone, a test zone, and a control zone. Numerical simulations were used to further optimize the design of these channels to achieve optimal fluid flow and target capture. The HD-nanoCu-Ni LFIA device utilizes a fluorescence quenching based sandwich immunoassay format using antibody-labeled gold nanoparticles (AuNPs) as quenchers. Two different fluorescent materials, fluorescein isothiocyanate (FITC) and CdSe@ZnS quantum dots (QDs), were used as background fluorophores in the device. Upon the formation of a sandwich immunocomplex with cTnI on the HD-nanoCu-Ni device, introduced AuNPs led to the fluorescence quenching of the background fluorophores. The total assay time was approximately 15 min, demonstrating the rapid and efficient nature of the HD-nanoCu-Ni LFIA platform. For FITC, both inner filter effect (IFE) and fluorescence resonance energy transfer (FRET) contributed to the AuNP-mediated quenching. In the case of CdSe@ZnS QDs, IFE dominated the AuNP-induced quenching. Calibration curves were established based on the relationship between the fluorescence quenching intensity and cTnI concentration in human serum samples, ranging from 0.5 to 128 ng/mL. The limits of detection (LODs) were determined to be 0.27 ng/mL and 0.40 ng/mL for FITC and CdSe@ZnS QDs, respectively. A method comparison study using Passing-Bablok regression analysis on varying cTnI concentrations in human serum samples confirmed the equivalence of the HD-nanoCu-Ni LFIA platform to a commercial fluorescence cTnI LFIA assay kit, with no significant systematic or proportional bias observed.
心肌肌钙蛋白I(cTnI)是诊断急性心肌梗死(AMI)的关键生物标志物。在此,我们报告了一种新型的集成侧向流动免疫分析(LFIA)平台,用于使用分级树枝状铜镍(HD-nanoCu-Ni)纳米结构对cTnI进行高灵敏度即时检测(POCT)。在涂有ITO的玻璃基板上电沉积的HD-nanoCu-Ni薄膜(约22μm厚)表现出优异的毛细作用和结构完整性。这些特性能够实现高效的样品传输和抗体固定,使其成为传统多组分纸质LFIA试纸条的有力替代品,传统试纸条常常受到结构脆弱和易受水分损坏的困扰。将生物功能化的HD-nanoCu-Ni基板用侧向流动通道进行激光蚀刻,包括样品加载/共轭物释放区、测试区和对照区。使用数值模拟进一步优化这些通道的设计,以实现最佳的流体流动和目标捕获。HD-nanoCu-Ni LFIA装置采用基于荧光猝灭的夹心免疫分析形式,使用抗体标记的金纳米颗粒(AuNPs)作为猝灭剂。两种不同的荧光材料,异硫氰酸荧光素(FITC)和CdSe@ZnS量子点(QDs),被用作装置中的背景荧光团。在HD-nanoCu-Ni装置上与cTnI形成夹心免疫复合物后,引入的AuNPs导致背景荧光团的荧光猝灭。总分析时间约为15分钟,证明了HD-nanoCu-Ni LFIA平台的快速高效特性。对于FITC,内滤效应(IFE)和荧光共振能量转移(FRET)都对AuNP介导的猝灭有贡献。在CdSe@ZnS QDs的情况下,IFE主导了AuNP诱导的猝灭。基于人血清样品中荧光猝灭强度与cTnI浓度之间的关系建立校准曲线,浓度范围为0.5至128 ng/mL。对于FITC和CdSe@ZnS QDs,检测限(LOD)分别确定为0.27 ng/mL和0.40 ng/mL。使用Passing-Bablok回归分析对人血清样品中不同cTnI浓度进行的方法比较研究证实,HD-nanoCu-Ni LFIA平台与商业荧光cTnI LFIA检测试剂盒等效,未观察到明显的系统偏差或比例偏差。