Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China; School of Software Technology, Zhejiang University, Ningbo 315048, China.
J Affect Disord. 2024 Sep 1;360:336-344. doi: 10.1016/j.jad.2024.05.136. Epub 2024 May 31.
The absence of clinically-validated biomarkers or objective protocols hinders effective major depressive disorder (MDD) diagnosis. Compared to healthy control (HC), MDD exhibits anomalies in plasma protein levels and neuroimaging presentations. Despite extensive machine learning studies in psychiatric diagnosis, a reliable tool integrating multi-modality data is still lacking.
In this study, blood samples from 100 MDD and 100 HC were analyzed, along with MRI images from 46 MDD and 49 HC. Here, we devised a novel algorithm, integrating graph neural networks and attention modules, for MDD diagnosis based on inflammatory cytokines, neurotrophic factors, and Orexin A levels in the blood samples. Model performance was assessed via accuracy and F1 value in 3-fold cross-validation, comparing with 9 traditional algorithms. We then applied our algorithm to a dataset containing both the aforementioned protein quantifications and neuroimages, evaluating if integrating neuroimages into the model improves performance.
Compared to HC, MDD showed significant alterations in plasma protein levels and gray matter volume revealed by MRI. Our new algorithm exhibited superior performance, achieving an F1 value and accuracy of 0.9436 and 94.08 %, respectively. Integration of neuroimaging data enhanced our novel algorithm's performance, resulting in an improved F1 value and accuracy, reaching 0.9543 and 95.06 %.
This single-center study with a small sample size requires future evaluations on a larger test set for improved reliability.
In comparison to traditional machine learning models, our newly developed MDD diagnostic model exhibited superior performance and showed promising potential for inclusion in routine clinical diagnosis for MDD.
目前缺乏临床验证的生物标志物或客观标准,这阻碍了对重度抑郁症(MDD)的有效诊断。与健康对照(HC)相比,MDD 患者的血浆蛋白水平和神经影像学表现存在异常。尽管在精神疾病诊断方面已经进行了广泛的机器学习研究,但仍然缺乏一种可靠的工具来整合多模态数据。
本研究对 100 名 MDD 和 100 名 HC 的血液样本进行了分析,并对 46 名 MDD 和 49 名 HC 的 MRI 图像进行了分析。在这里,我们设计了一种新的算法,该算法结合了图神经网络和注意力模块,用于根据血液样本中的炎症细胞因子、神经营养因子和 Orexin A 水平对 MDD 进行诊断。通过在 3 折交叉验证中评估准确性和 F1 值,与 9 种传统算法进行比较,评估模型性能。然后,我们将我们的算法应用于包含上述蛋白质定量和神经图像的数据集,评估将神经图像集成到模型中是否可以提高性能。
与 HC 相比,MDD 患者的血浆蛋白水平和 MRI 显示的灰质体积发生了显著变化。我们的新算法表现出了优异的性能,F1 值和准确率分别达到了 0.9436 和 94.08%。将神经影像学数据集成到我们的新算法中提高了其性能,从而提高了 F1 值和准确率,达到了 0.9543 和 95.06%。
这项单中心研究样本量较小,需要在更大的测试集中进行进一步评估,以提高可靠性。
与传统的机器学习模型相比,我们新开发的 MDD 诊断模型表现出了更好的性能,并且具有在 MDD 的常规临床诊断中应用的潜力。