Suppr超能文献

多视图图网络学习框架用于识别重度抑郁症。

Multi-view graph network learning framework for identification of major depressive disorder.

机构信息

School of Automation, Hangzhou Dianzi University, Hangzhou, China.

Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

出版信息

Comput Biol Med. 2023 Nov;166:107478. doi: 10.1016/j.compbiomed.2023.107478. Epub 2023 Sep 25.

Abstract

Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) exhibits non-Euclidean topological structures, which have pathological foundations and serve as ideal objective data for intelligent diagnosis of major depressive disorder (MDD) patients. Additionally, the fully connected FC demonstrates uniform spatial structures. To learn and integrate information from these two structural forms for a more comprehensive identification of MDD patients, we propose a novel hierarchical learning structure called Multi-View Graph Neural Network (MV-GNN). In MV-GNN, the collaborative FC of subjects is filtered and reconstructed from topological view to obtain the reconstructed FC, incorporating various threshold values to calculate the topological attributes of brain regions. ROC analysis is performed on the average scores of these attributes for MDD and healthy control (HC) groups to determine an efficient threshold. Group differences analysis is conducted on the efficient topological attributes of brain regions, followed by their selection. These efficient attributes, along with the reconstructed FC, are combined to construct a graph view using self-attention graph pooling and graph convolutional neural networks, enabling efficient embedding. To extract efficient FC pattern difference information from spatial view, a dual leave-one-out cross-feature selection method is proposed. It selects and extracts relevant information from uniformly sized FC structures' high-dimensional spatial features, constructing a relationship view between brain regions. This approach incorporates both the whole graph topological view and spatial relationship view in a multi-layered structure, fusing them using gating mechanisms. By incorporating multiple views, it enhances the inference of whether subjects suffer from MDD and reveals differential information between MDD and HC groups across different perspectives. The proposed model structure is evaluated through leave-one-site cross-validation and achieves an average accuracy of 65.61% in identifying MDD patients at a single-center site, surpassing state-of-the-art methods in MDD recognition. The model provides valuable discriminatory information for objective diagnosis of MDD and serves as a reference for pathological foundations.

摘要

功能连接(FC)源自静息态功能磁共振成像(rs-fMRI),表现出非欧几里得拓扑结构,具有病理基础,可作为重度抑郁症(MDD)患者智能诊断的理想客观数据。此外,完全连接的 FC 表现出均匀的空间结构。为了学习和整合这两种结构形式的信息,以便更全面地识别 MDD 患者,我们提出了一种名为多视图图神经网络(MV-GNN)的新的分层学习结构。在 MV-GNN 中,从拓扑角度过滤和重建主体的协作 FC,以获得重构 FC,计算脑区的拓扑属性时采用各种阈值。对 MDD 和健康对照组(HC)的这些属性的平均得分进行 ROC 分析,以确定有效的阈值。对脑区有效的拓扑属性进行组间差异分析,然后进行选择。将这些有效的属性与重构的 FC 结合起来,使用自注意力图池化和图卷积神经网络构建图视图,实现高效嵌入。为了从空间视图中提取有效的 FC 模式差异信息,提出了一种双留一交叉特征选择方法。它从均匀大小的 FC 结构的高维空间特征中选择和提取相关信息,构建脑区之间的关系视图。这种方法在多层结构中结合了整个图拓扑视图和空间关系视图,使用门控机制融合它们。通过结合多个视图,增强了推断主体是否患有 MDD 的能力,并从不同角度揭示了 MDD 和 HC 组之间的差异信息。通过单站点交叉验证评估所提出的模型结构,在单中心站点识别 MDD 患者的平均准确率为 65.61%,超过了 MDD 识别的最新方法。该模型为 MDD 的客观诊断提供了有价值的鉴别信息,为病理基础提供了参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验