Sutton Ashley L, Mardel James I, Hill Matthew R
Manufacturing, CSIRO, Private Bag 33, Clayton South MDC, Vic 3169, Australia.
Department of Chemical and Biological Engineering, Monash University, Department of Chemical and Biological Engineering, Monash University, Clayton, Vic 3168, Australia.
Chemistry. 2024 Aug 6;30(44):e202400717. doi: 10.1002/chem.202400717. Epub 2024 Jul 18.
Hydrogen may play a critical role in our efforts to de-carbonize by 2050. However, there remain technical challenges in the storage and transport of hydrogen. Metal-organic frameworks (MOFs) have shown significant promise for hydrogen storage at cryogenic temperatures. A material that can meet the US department of energy (DOE) ultimate goal of 6.5 wt. % for gravimetric performance and 50 g/L for volumetric storage at near-ambient temperatures would unlock hydrogen as a future fuel source for on-board applications. Metal-organic frameworks typically have low heat of adsorptions (i. e. 4-7 kJ/mol), whereas for storing significant quantities of hydrogen at near-ambient temperatures, 15-25 kJ/mol is likely required. In this review we explore the current methods used (i. e., open-metal sites, alkali dopants and hydrogen spillover) for promoting strong adsorption within MOFs. Further we discuss MOF-based materials with respect to the technical aspects of deliverable capacity, kinetics and stability.
氢在我们到2050年实现脱碳的努力中可能发挥关键作用。然而,氢的储存和运输仍然存在技术挑战。金属有机框架(MOF)在低温下储存氢方面已显示出巨大潜力。一种能够在接近环境温度下满足美国能源部(DOE)重量性能6.5 wt.%和体积储存50 g/L的最终目标的材料,将使氢成为未来车载应用的燃料来源。金属有机框架通常具有较低的吸附热(即4-7 kJ/mol),而在接近环境温度下储存大量氢可能需要15-25 kJ/mol。在这篇综述中,我们探讨了目前用于促进MOF内强吸附的方法(即开放金属位点、碱掺杂剂和氢溢流)。此外,我们还从可交付容量、动力学和稳定性等技术方面讨论了基于MOF的材料。