Suppr超能文献

超越“统计学意义”:健康研究人员的贝叶斯统计和贝叶斯因子的非技术性入门。

Beyond 'statistical significance': A nontechnical primer of Bayesian statistics and Bayes factors for health researchers.

机构信息

Memorial University of Newfoundland, St. John's, Newfoundland, Canada.

出版信息

J Eval Clin Pract. 2024 Oct;30(7):1218-1226. doi: 10.1111/jep.14032. Epub 2024 Jun 2.

Abstract

RATIONALE

Hypothesis testing is integral to health research and is commonly completed through frequentist statistics focused on computing p values. p Values have been long criticized for offering limited information about the relationship of variables and strength of evidence concerning the plausibility, presence and certainty of associations among variables. Bayesian statistics is a potential alternative for inference-making. Despite emerging discussion on Bayesian statistics across various disciplines, the uptake of Bayesian statistics in health research is still limited.

AIM

To offer a primer on Bayesian statistics and Bayes factors for health researchers to gain preliminary knowledge of its use, application and interpretation in health research.

METHODS

Theoretical and empirical literature on Bayesian statistics and methods were used to develop this methodological primer.

CONCLUSIONS

Using Bayesian statistics in health research without a careful and complete understanding of its underlying philosophy and differences from frequentist testing, estimation and interpretation methods can result in similar ritualistic use as done for p values.

IMPLICATIONS

Health researchers should supplement frequentists statistics with Bayesian statistics when analysing research data. The overreliance on p values for clinical decisions making should be avoided. Bayes factors offer a more intuitive measure of assessing the strength of evidence for null and alternative hypothesis.

摘要

原理

假设检验是健康研究的重要组成部分,通常通过关注计算 p 值的频率统计学来完成。p 值长期以来一直受到批评,因为它提供的关于变量关系的信息有限,并且关于变量之间关联的可能性、存在性和确定性的证据强度也有限。贝叶斯统计学是一种潜在的替代推理方法。尽管在各个学科中都有关于贝叶斯统计学的讨论,但它在健康研究中的应用仍然有限。

目的

为健康研究人员提供贝叶斯统计学和贝叶斯因子的入门知识,使他们初步了解其在健康研究中的使用、应用和解释。

方法

使用关于贝叶斯统计学和方法的理论和实证文献来开发这个方法学入门。

结论

在健康研究中使用贝叶斯统计学,如果没有仔细和全面地了解其潜在哲学以及与频率统计学测试、估计和解释方法的区别,可能会导致与 p 值类似的仪式性使用。

影响

健康研究人员在分析研究数据时,应该将贝叶斯统计学与频率统计学结合使用。应该避免过度依赖 p 值来做出临床决策。贝叶斯因子提供了一种更直观的衡量标准,用于评估对零假设和备择假设的证据强度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验