Suppr超能文献

贝叶斯统计学在临床研究中的应用。

Bayesian statistics for clinical research.

机构信息

Interdepartmental Division of Critical Care Medicine and Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology, University Health Network, Toronto, ON, Canada; Toronto General Hospital Research Institute, Toronto, ON, Canada.

Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

出版信息

Lancet. 2024 Sep 14;404(10457):1067-1076. doi: 10.1016/S0140-6736(24)01295-9.

Abstract

Frequentist and Bayesian statistics represent two differing paradigms for the analysis of data. Frequentism became the dominant mode of statistical thinking in medical practice during the 20th century. The advent of modern computing has made Bayesian analysis increasingly accessible, enabling growing use of Bayesian methods in a range of disciplines, including medical research. Rather than conceiving of probability as the expected frequency of an event (purported to be measurable and objective), Bayesian thinking conceives of probability as a measure of strength of belief (an explicitly subjective concept). Bayesian analysis combines previous information (represented by a mathematical probability distribution, the prior) with information from the study (the likelihood function) to generate an updated probability distribution (the posterior) representing the information available for clinical decision making. Owing to its fundamentally different conception of probability, Bayesian statistics offers an intuitive, flexible, and informative approach that facilitates the design, analysis, and interpretation of clinical trials. In this Review, we provide a brief account of the philosophical and methodological differences between Bayesian and frequentist approaches and survey the use of Bayesian methods for the design and analysis of clinical research.

摘要

频率派和贝叶斯统计学代表了数据分析的两种不同范式。在 20 世纪,频率派成为医学实践中占主导地位的统计思维模式。现代计算技术的出现使得贝叶斯分析越来越容易获得,从而使贝叶斯方法在包括医学研究在内的一系列学科中得到了越来越多的应用。贝叶斯思维不是将概率视为事件的预期频率(据称是可测量和客观的),而是将概率视为信念强度的度量(一个明确的主观概念)。贝叶斯分析将先前的信息(由数学概率分布表示,即先验)与研究中的信息(似然函数)相结合,生成表示可用于临床决策的信息的更新概率分布(后验)。由于其对概率的基本不同概念,贝叶斯统计学提供了一种直观、灵活和信息丰富的方法,有助于临床研究的设计、分析和解释。在这篇综述中,我们简要介绍了贝叶斯和频率派方法之间的哲学和方法学差异,并调查了贝叶斯方法在临床研究设计和分析中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验