Department of AI Engineering, Graduate School of Sciences, 232990 Uskudar University , Istanbul, Türkiye.
Department of Mechanical Engineering, Faculty of Engineering and Architecture, 226844 İzmir Katip Çelebi University , İzmir, Türkiye.
Biomed Tech (Berl). 2024 Jun 4;69(5):501-513. doi: 10.1515/bmt-2023-0356. Print 2024 Oct 28.
The primary objective of this research is to improve the average classification performance for specific movements in patients with cervical spinal cord injury (SCI).
The study utilizes a low-frequency multi-class electroencephalography (EEG) dataset from Graz University of Technology. The research combines convolutional neural network (CNN) and long-short-term memory (LSTM) architectures to uncover neural correlations between temporal and spatial aspects of the EEG signals associated with attempted arm and hand movements. To achieve this, three different methods are used to select relevant features, and the proposed model's robustness against variations in the data is validated using 10-fold cross-validation (CV). The research also investigates subject-specific adaptation in an online paradigm, extending movement classification proof-of-concept.
The combined CNN-LSTM model, enhanced by three feature selection methods, demonstrates robustness with a mean accuracy of 75.75 % and low standard deviation (+/- 0.74 %) in 10-fold cross-validation, confirming its reliability.
In summary, this research aims to make valuable contributions to the field of neuro-technology by developing EEG-controlled assistive devices using a generalized brain-computer interface (BCI) and deep learning (DL) framework. The focus is on capturing high-level spatiotemporal features and latent dependencies to enhance the performance and usability of EEG-based assistive technologies.
本研究的主要目的是提高颈脊髓损伤(SCI)患者特定运动的平均分类性能。
该研究利用格拉茨技术大学的低频多类脑电(EEG)数据集。研究结合卷积神经网络(CNN)和长短时记忆(LSTM)架构,揭示与尝试手臂和手部运动相关的 EEG 信号的时间和空间方面的神经相关性。为此,使用三种不同的方法来选择相关特征,并使用 10 倍交叉验证(CV)验证所提出模型对数据变化的鲁棒性。该研究还在在线范例中调查了特定于主题的适应性,扩展了运动分类的概念验证。
增强了三种特征选择方法的 CNN-LSTM 组合模型在 10 倍 CV 中表现出稳健性,平均准确率为 75.75%,标准偏差低(+/-0.74%),证实了其可靠性。
总之,本研究旨在通过使用通用脑机接口(BCI)和深度学习(DL)框架开发 EEG 控制辅助设备,为神经技术领域做出有价值的贡献。重点是捕捉高级时空特征和潜在依赖性,以提高基于 EEG 的辅助技术的性能和可用性。