Suppr超能文献

综合网络建模方法揭示了神经分化过程中动态增强子-启动子相互作用。

Comprehensive network modeling approaches unravel dynamic enhancer-promoter interactions across neural differentiation.

作者信息

DeGroat William, Inoue Fumitaka, Ashuach Tal, Yosef Nir, Ahituv Nadav, Kreimer Anat

机构信息

Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854, UAS.

Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.

出版信息

bioRxiv. 2024 May 23:2024.05.22.595375. doi: 10.1101/2024.05.22.595375.

Abstract

BACKGROUND

Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of regulatory programs this variation affects can shed light on the apparatuses of human diseases.

RESULTS

We collected epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we constructed networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks served as the base for a rich series of analyses, through which we demonstrated their temporal dynamics and enrichment for various disease-associated variants. We applied the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrated methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays.

CONCLUSIONS

Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes. This includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.

摘要

背景

越来越多的证据表明,相当一部分与疾病相关的突变发生在增强子中,增强子是基因调控所必需的非编码DNA区域。了解这种变异所影响的调控程序的结构和机制,有助于揭示人类疾病的发病机制。

结果

我们收集了神经分化过程中七个早期时间点的表观遗传和基因表达数据集。基于这个模型系统,我们构建了增强子-启动子相互作用网络,每个网络对应神经诱导的一个单独阶段。这些网络为一系列丰富的分析提供了基础,通过这些分析,我们展示了它们的时间动态以及对各种疾病相关变体的富集情况。我们将Girvan-Newman聚类算法应用于这些网络,以揭示生物学上相关的调控子结构。此外,我们展示了使用转录因子过表达和大规模平行报告基因检测来验证预测的增强子-启动子相互作用的方法。

结论

我们的研究结果提出了一个可推广的框架,用于探索基因调控程序及其在发育过程中的动态变化。这包括一种全面的方法来研究疾病相关变异对转录网络的影响。应用于我们网络的技术已作为一种计算工具E-P-INAnalyzer与我们的研究结果一同发表。我们的程序可用于不同的细胞环境和疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14be/11142193/336781d6c600/nihpp-2024.05.22.595375v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验