Khan Asad Ur Rehman, Ramzan Muhammad, Alanazi Seham J F, Al-Mohaimeed Amal M, Ali Shahzaib, Imran Muhammad, Majid Muhammad Abdul, Sarfraz Muhammad Hassan
Institute of Physics, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
ACS Omega. 2024 May 17;9(21):22650-22659. doi: 10.1021/acsomega.3c10521. eCollection 2024 May 28.
Herein, n-type pure and Zn-doped monoclinic bismuth oxide nanoparticles were synthesized by the citrate sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) analysis, ultraviolet-visible (UV-vis) spectroscopy, and Hall effect measurements were used to study the effect of Zn on the structural, optical, and electrical properties of nanoparticles. XRD revealed the monoclinic stable phase (α-BiO) of all synthesized samples and the crystallite size of nanoparticles increased with increasing concentration of dopant. Optical analysis illustrated the red shift of absorption edge and blue shift of band gap with increasing concentration of dopant. Hall Effect measurements showed improved values (2.79 × 10 S cm and 6.89 cm/V·s) of conductivity and mobility, respectively, for Zn-doped α-BiO nanoparticles. The tuned optical band gap and improved electrical properties make Zn-doped α-BiO nanostructures promising candidates for optoelectronic devices. The degradation of methylene blue (MB, organic dye) in pure and zinc-doped α-BiO was investigated under solar irradiation. The optimum doping level of zinc (4.5% Zn-doped α-BiO) reveals the attractive photocatalytic activity of α-BiO nanostructures due to electron trapping and detrapping for solar cells.
在此,采用柠檬酸盐溶胶 - 凝胶法合成了n型纯相和锌掺杂的单斜氧化铋纳米颗粒。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、光致发光(PL)分析、紫外 - 可见(UV - vis)光谱和霍尔效应测量来研究锌对纳米颗粒结构、光学和电学性质的影响。XRD显示所有合成样品均为单斜稳定相(α - BiO),且纳米颗粒的微晶尺寸随掺杂剂浓度的增加而增大。光学分析表明,随着掺杂剂浓度的增加,吸收边发生红移,带隙发生蓝移。霍尔效应测量表明,锌掺杂的α - BiO纳米颗粒的电导率和迁移率分别提高到了2.79×10 S cm和6.89 cm/V·s。可调谐的光学带隙和改善的电学性质使锌掺杂的α - BiO纳米结构成为光电器件的有前途的候选材料。研究了纯相和锌掺杂的α - BiO在太阳辐射下对亚甲基蓝(MB,有机染料)的降解情况。锌的最佳掺杂水平(4.5%锌掺杂的α - BiO)显示出α - BiO纳米结构由于电子俘获和解俘获而具有吸引人的光催化活性,可用于太阳能电池。