Yogamalar Rajeswari, Venkateswaran Pedinti S, Benzigar Mercy R, Ariga Katsuhiko, Vinu Ajayan, Bose A Chandra
Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620015, India.
J Nanosci Nanotechnol. 2012 Jan;12(1):75-83. doi: 10.1166/jnn.2012.5760.
In this report, hydrothermal synthesis and the absorption properties of the cubic shaped zinc oxide nanostructures doped with different amount of yttrium (Y) metal cation (0 to 15 at.%) are demonstrated. The structural and optical properties of chemically synthesized pure and Y doped ZnO powders are investigated by using powder X-ray diffraction (XRD), field emission scanning electron spectroscopy (FESEM) and transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorbance, photoluminescence (PL), and Fourier transform infra-red spectroscopy (FT-IR). It is found that the dopant ions stabilize in wurtzite hexagonal phase of ZnO upto the concentration of less than 6 at.%, which is mainly due to the fact that the ZnO lattice expands and the optical bandgap energy decreases at this level. Increasing the dopant concentration to greater than 6 at.% leads to a contraction of the lattice, which in turn produces a significant structural disorder evidenced by shift in the XRD peaks due to additional interstitial incorporation of Y. The vibrational modes of the metal oxide groups have been identified from the IR transmission spectra. The optical absorption results show that the optical bandgap energy of Y:ZnO nanocrystals is much less as compared to that of the pure bulk ZnO particles. Doping ZnO with trivalent Y produces excess number of electrons in the conduction band and thus, shifts the absorption edge and narrows down to 80 meV approximately. PL spectra are used to study the dependence of doping on the deep-level emission, which show an enhanced blue emission after Y doping. The existence of near band edge (NBE) emission and blue emission, related to zinc interstitials are observed in the luminescence spectra of Zn(1-x)Y(x)O nanostructures.
在本报告中,展示了水热合成以及不同含量钇(Y)金属阳离子(0至15原子百分比)掺杂的立方体形氧化锌纳米结构的吸收特性。通过粉末X射线衍射(XRD)、场发射扫描电子光谱(FESEM)和透射电子显微镜(TEM)、紫外可见(UV-vis)吸光度、光致发光(PL)以及傅里叶变换红外光谱(FT-IR),研究了化学合成的纯氧化锌粉末和钇掺杂氧化锌粉末的结构和光学性质。发现掺杂离子在氧化锌的纤锌矿六方相中稳定存在,直至浓度小于6原子百分比,这主要是因为在此浓度下氧化锌晶格膨胀且光学带隙能量降低。将掺杂剂浓度增加到大于6原子百分比会导致晶格收缩,这反过来又会产生明显的结构无序,表现为由于钇的额外间隙掺入导致XRD峰发生位移。已从红外透射光谱中识别出金属氧化物基团的振动模式。光学吸收结果表明,与纯块状氧化锌颗粒相比,钇掺杂氧化锌纳米晶体的光学带隙能量要小得多。用三价钇掺杂氧化锌会在导带中产生过量电子,从而使吸收边缘发生位移并缩小至约80毫电子伏特。PL光谱用于研究掺杂对深能级发射的依赖性,结果表明钇掺杂后蓝光发射增强。在Zn(1-x)Y(x)O纳米结构的发光光谱中观察到了与锌间隙相关的近带边(NBE)发射和蓝光发射。