Suppr超能文献

用于额叶α波不对称性神经反馈学习效能的多模态和半球图论脑网络预测指标。

Multimodal and hemispheric graph-theoretical brain network predictors of learning efficacy for frontal alpha asymmetry neurofeedback.

作者信息

Li Linling, Li Yutong, Li Zhaoxun, Huang Gan, Liang Zhen, Zhang Li, Wan Feng, Shen Manjun, Han Xue, Zhang Zhiguo

机构信息

School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China.

Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China.

出版信息

Cogn Neurodyn. 2024 Jun;18(3):847-862. doi: 10.1007/s11571-023-09939-x. Epub 2023 Feb 19.

Abstract

UNLABELLED

EEG neurofeedback using frontal alpha asymmetry (FAA) has been widely used for emotion regulation, but its effectiveness is controversial. Studies indicated that individual differences in neurofeedback training can be traced to neuroanatomical and neurofunctional features. However, they only focused on regional brain structure or function and overlooked possible neural correlates of the brain network. Besides, no neuroimaging predictors for FAA neurofeedback protocol have been reported so far. We designed a single-blind pseudo-controlled FAA neurofeedback experiment and collected multimodal neuroimaging data from healthy participants before training. We assessed the learning performance for evoked EEG modulations during training (L1) and at rest (L2), and investigated performance-related predictors based on a combined analysis of multimodal brain networks and graph-theoretical features. The main findings of this study are described below. First, both real and sham groups could increase their FAA during training, but only the real group showed a significant increase in FAA at rest. Second, the predictors during training blocks and at rests were different: L1 was correlated with the graph-theoretical metrics (clustering coefficient and local efficiency) of the right hemispheric gray matter and functional networks, while L2 was correlated with the graph-theoretical metrics (local and global efficiency) of the whole-brain and left the hemispheric functional network. Therefore, the individual differences in FAA neurofeedback learning could be explained by individual variations in structural/functional architecture, and the correlated graph-theoretical metrics of learning performance indices showed different laterality of hemispheric networks. These results provided insight into the neural correlates of inter-individual differences in neurofeedback learning.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-023-09939-x.

摘要

未标注

使用额叶α波不对称性(FAA)的脑电图神经反馈已被广泛用于情绪调节,但其有效性存在争议。研究表明,神经反馈训练中的个体差异可追溯到神经解剖学和神经功能特征。然而,这些研究仅关注局部脑结构或功能,而忽略了脑网络可能的神经关联。此外,迄今为止尚未有关于FAA神经反馈方案的神经影像学预测指标的报道。我们设计了一项单盲伪对照FAA神经反馈实验,并在训练前收集了健康参与者的多模态神经影像学数据。我们评估了训练期间(L1)和静息时(L2)诱发脑电图调制的学习表现,并基于多模态脑网络和图论特征的综合分析研究了与表现相关的预测指标。本研究的主要发现如下。首先,真实组和伪刺激组在训练期间均可提高其FAA,但只有真实组在静息时FAA有显著增加。其次,训练阶段和静息时的预测指标不同:L1与右侧半球灰质和功能网络的图论指标(聚类系数和局部效率)相关,而L2与全脑和左侧半球功能网络的图论指标(局部和全局效率)相关。因此,FAA神经反馈学习中的个体差异可由结构/功能结构的个体差异来解释,且学习表现指标的相关图论指标显示出半球网络的不同偏侧性。这些结果为神经反馈学习中个体差异的神经关联提供了见解。

补充信息

在线版本包含可在10.1007/s11571-023-09939-x获取的补充材料。

相似文献

1
Multimodal and hemispheric graph-theoretical brain network predictors of learning efficacy for frontal alpha asymmetry neurofeedback.
Cogn Neurodyn. 2024 Jun;18(3):847-862. doi: 10.1007/s11571-023-09939-x. Epub 2023 Feb 19.
2
Multimodal Neuroimaging Predictors of Learning Performance of Sensorimotor Rhythm Up-Regulation Neurofeedback.
Front Neurosci. 2021 Jul 20;15:699999. doi: 10.3389/fnins.2021.699999. eCollection 2021.
4
Emotion self-regulation training in major depressive disorder using simultaneous real-time fMRI and EEG neurofeedback.
Neuroimage Clin. 2020;27:102331. doi: 10.1016/j.nicl.2020.102331. Epub 2020 Jun 27.
5
The validity of individual frontal alpha asymmetry EEG neurofeedback.
Soc Cogn Affect Neurosci. 2016 Jan;11(1):33-43. doi: 10.1093/scan/nsv090. Epub 2015 Jul 10.
7
Probing fMRI brain connectivity and activity changes during emotion regulation by EEG neurofeedback.
Front Hum Neurosci. 2023 Jan 6;16:988890. doi: 10.3389/fnhum.2022.988890. eCollection 2022.
8
Frontal alpha asymmetry interaction with an experimental story EEG brain-computer interface.
Front Hum Neurosci. 2022 Aug 12;16:883467. doi: 10.3389/fnhum.2022.883467. eCollection 2022.
9
Hemispheric Asymmetry of Functional Brain Networks under Different Emotions Using EEG Data.
Entropy (Basel). 2020 Aug 26;22(9):939. doi: 10.3390/e22090939.
10
Classification of Complex Emotions Using EEG and Virtual Environment: Proof of Concept and Therapeutic Implication.
Front Hum Neurosci. 2021 Aug 26;15:711279. doi: 10.3389/fnhum.2021.711279. eCollection 2021.

引用本文的文献

1
Decoded EEG neurofeedback-guided cognitive reappraisal training for emotion regulation.
Cogn Neurodyn. 2024 Oct;18(5):2659-2673. doi: 10.1007/s11571-024-10108-x. Epub 2024 May 3.

本文引用的文献

1
Editorial: Inter- and Intra-subject Variability in Brain Imaging and Decoding.
Front Comput Neurosci. 2021 Nov 29;15:791129. doi: 10.3389/fncom.2021.791129. eCollection 2021.
2
Multimodal Neuroimaging Predictors of Learning Performance of Sensorimotor Rhythm Up-Regulation Neurofeedback.
Front Neurosci. 2021 Jul 20;15:699999. doi: 10.3389/fnins.2021.699999. eCollection 2021.
4
Large-Scale Morphological Network Efficiency of Human Brain: Cognitive Intelligence and Emotional Intelligence.
Front Aging Neurosci. 2021 Feb 24;13:605158. doi: 10.3389/fnagi.2021.605158. eCollection 2021.
5
Psychological, Neurophysiological, and Mental Factors Associated With Gamma-Enhancing Neurofeedback Success.
Basic Clin Neurosci. 2020 Sep-Oct;11(5):701-714. doi: 10.32598/bcn.11.5.1878.1. Epub 2020 Sep 1.
6
The Current Evidence Levels for Biofeedback and Neurofeedback Interventions in Treating Depression: A Narrative Review.
Neural Plast. 2021 Feb 4;2021:8878857. doi: 10.1155/2021/8878857. eCollection 2021.
7
Emotion self-regulation training in major depressive disorder using simultaneous real-time fMRI and EEG neurofeedback.
Neuroimage Clin. 2020;27:102331. doi: 10.1016/j.nicl.2020.102331. Epub 2020 Jun 27.
8
Predictors of neurofeedback training outcome: A systematic review.
Neuroimage Clin. 2020;27:102301. doi: 10.1016/j.nicl.2020.102301. Epub 2020 May 28.
9
Global Data-Driven Analysis of Brain Connectivity During Emotion Regulation by Electroencephalography Neurofeedback.
Brain Connect. 2020 Aug;10(6):302-315. doi: 10.1089/brain.2019.0734. Epub 2020 Jul 7.
10
Efficacy, Trainability, and Neuroplasticity of SMR vs. Alpha Rhythm Shooting Performance Neurofeedback Training.
Front Hum Neurosci. 2020 Mar 20;14:94. doi: 10.3389/fnhum.2020.00094. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验