Suppr超能文献

基于脑电图网络拓扑结构的儿童自闭症谱系障碍识别

Recognition of autism spectrum disorder in children based on electroencephalogram network topology.

作者信息

Li Fali, Zhang Shu, Jiang Lin, Duan Keyi, Feng Rui, Zhang Yingli, Zhang Gao, Zhang Yangsong, Li Peiyang, Yao Dezhong, Xie Jiang, Xu Wenming, Xu Peng

机构信息

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731 China.

School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731 China.

出版信息

Cogn Neurodyn. 2024 Jun;18(3):1033-1045. doi: 10.1007/s11571-023-09962-y. Epub 2023 Apr 12.

Abstract

Although our knowledge of autism spectrum disorder (ASD) has been deepened, the accurate diagnosis of ASD from normal individuals is still left behind. In this study, we proposed to apply the spatial pattern of the network topology (SPN) to identify children with ASD from normal ones. Based on two independent batches of electroencephalogram datasets collected separately, the accurate recognition of ASD from normal children was achieved by applying the proposed SPN features. Since decreased long-range connectivity was identified for children with ASD, the SPN features extracted from the distinctive topological architecture between two groups in the first dataset were used to validate the capacity of SPN in classifying ASD, and the SPN features achieved the highest accuracy of 92.31%, which outperformed the other features e.g., power spectrum density (84.62%), network properties (76.92%), and sample entropy (73.08%). Moreover, within the second dataset, by using the model trained in the first dataset, the SPN also acquired the highest sensitivity in recognizing ASD, when compared to the other features. These results consistently illustrated that the functional brain network, especially the intrinsic spatial network topology, might be the potential biomarker for the diagnosis of ASD.

摘要

尽管我们对自闭症谱系障碍(ASD)的了解有所加深,但从正常个体中准确诊断出ASD仍存在不足。在本研究中,我们提议应用网络拓扑的空间模式(SPN)来区分患有ASD的儿童和正常儿童。基于分别收集的两批独立脑电图数据集,通过应用所提出的SPN特征实现了从正常儿童中准确识别出ASD。由于已确定ASD儿童的长程连接性降低,因此从第一个数据集中两组之间独特拓扑结构中提取的SPN特征被用于验证SPN对ASD进行分类的能力,并且SPN特征达到了92.31%的最高准确率,优于其他特征,例如功率谱密度(84.62%)、网络属性(76.92%)和样本熵(73.08%)。此外,在第二个数据集中,通过使用在第一个数据集中训练的模型,与其他特征相比,SPN在识别ASD方面也具有最高的敏感性。这些结果一致表明,功能性脑网络,尤其是内在的空间网络拓扑结构,可能是ASD诊断的潜在生物标志物。

相似文献

1
Recognition of autism spectrum disorder in children based on electroencephalogram network topology.
Cogn Neurodyn. 2024 Jun;18(3):1033-1045. doi: 10.1007/s11571-023-09962-y. Epub 2023 Apr 12.
2
Brain Functional Network Topology in Autism Spectrum Disorder: A Novel Weighted Hierarchical Complexity Metric for Electroencephalogram.
IEEE J Biomed Health Inform. 2023 Apr;27(4):1718-1725. doi: 10.1109/JBHI.2022.3232550. Epub 2023 Apr 4.
5
NAS-optimized topology-preserving transfer learning for differentiating cortical folding patterns.
Med Image Anal. 2022 Apr;77:102316. doi: 10.1016/j.media.2021.102316. Epub 2021 Dec 20.
6
A multi-filter deep transfer learning framework for image-based autism spectrum disorder detection.
Sci Rep. 2025 Apr 24;15(1):14253. doi: 10.1038/s41598-025-97708-7.
7
Shared atypical default mode and salience network functional connectivity between autism and schizophrenia.
Autism Res. 2017 Nov;10(11):1776-1786. doi: 10.1002/aur.1834. Epub 2017 Jul 21.
8
Discrimination of Tourette Syndrome Based on the Spatial Patterns of the Resting-State EEG Network.
Brain Topogr. 2021 Jan;34(1):78-87. doi: 10.1007/s10548-020-00801-5. Epub 2020 Oct 31.

引用本文的文献

1
[Effect of music therapy on brain function of autistic children based on power spectrum and sample entropy].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Jun 25;42(3):537-543. doi: 10.7507/1001-5515.202401021.

本文引用的文献

1
Recognition of the Multi-class Schizophrenia Based on the Resting-State EEG Network Topology.
Brain Topogr. 2022 Jul;35(4):495-506. doi: 10.1007/s10548-022-00907-y. Epub 2022 Jul 18.
2
Predicting the Symptom Severity in Autism Spectrum Disorder Based on EEG Metrics.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:1898-1907. doi: 10.1109/TNSRE.2022.3188564. Epub 2022 Jul 15.
3
A Novel Method for Constructing EEG Large-Scale Cortical Dynamical Functional Network Connectivity (dFNC): WTCS.
IEEE Trans Cybern. 2022 Dec;52(12):12869-12881. doi: 10.1109/TCYB.2021.3090770. Epub 2022 Nov 18.
5
Identifying Refractory Epilepsy Without Structural Abnormalities by Fusing the Common Spatial Patterns of Functional and Effective EEG Networks.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:708-717. doi: 10.1109/TNSRE.2021.3071785. Epub 2021 Apr 19.
7
Discrimination of Tourette Syndrome Based on the Spatial Patterns of the Resting-State EEG Network.
Brain Topogr. 2021 Jan;34(1):78-87. doi: 10.1007/s10548-020-00801-5. Epub 2020 Oct 31.
8
A study on EEG feature extraction and classification in autistic children based on singular spectrum analysis method.
Brain Behav. 2020 Dec;10(12):e01721. doi: 10.1002/brb3.1721. Epub 2020 Oct 30.
9
Predicting individual decision-making responses based on single-trial EEG.
Neuroimage. 2020 Feb 1;206:116333. doi: 10.1016/j.neuroimage.2019.116333. Epub 2019 Nov 4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验