Suppr超能文献

基于注意力机制图神经网络联合基因表达的自闭症谱系障碍脑功能活动分类

Brain functional activity-based classification of autism spectrum disorder using an attention-based graph neural network combined with gene expression.

机构信息

School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, PR China.

The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China.

出版信息

Cereb Cortex. 2023 May 9;33(10):6407-6419. doi: 10.1093/cercor/bhac513.

Abstract

Autism spectrum disorder (ASD) is a complex brain neurodevelopmental disorder related to brain activity and genetics. Most of the ASD diagnostic models perform feature selection at the group level without considering individualized information. Evidence has shown the unique topology of the individual brain has a fundamental impact on brain diseases. Thus, a data-constructing method fusing individual topological information and a corresponding classification model is crucial in ASD diagnosis and biomarker discovery. In this work, we trained an attention-based graph neural network (GNN) to perform the ASD diagnosis with the fusion of graph data. The results achieved an accuracy of 79.78%. Moreover, we found the model paid high attention to brain regions mainly involved in the social-brain circuit, default-mode network, and sensory perception network. Furthermore, by analyzing the covariation between functional magnetic resonance imaging data and gene expression, current studies detected several ASD-related genes (i.e. MUTYH, AADAT, and MAP2), and further revealed their links to image biomarkers. Our work demonstrated that the ASD diagnostic framework based on graph data and attention-based GNN could be an effective tool for ASD diagnosis. The identified functional features with high attention values may serve as imaging biomarkers for ASD.

摘要

自闭症谱系障碍 (ASD) 是一种与大脑活动和遗传有关的复杂的脑神经发育障碍。大多数 ASD 诊断模型在群组级别进行特征选择,而不考虑个体信息。有证据表明,个体大脑的独特拓扑结构对大脑疾病有根本影响。因此,融合个体拓扑信息的数据构建方法和相应的分类模型对于 ASD 诊断和生物标志物发现至关重要。在这项工作中,我们使用融合图数据的图注意神经网络 (GNN) 对 ASD 进行诊断,模型的准确率达到 79.78%。此外,我们发现该模型高度关注主要涉及社会脑回路、默认模式网络和感觉感知网络的脑区。此外,通过分析功能磁共振成像数据和基因表达之间的协变关系,当前研究检测到了几个与 ASD 相关的基因(即 MUTYH、AADAT 和 MAP2),并进一步揭示了它们与影像生物标志物的联系。我们的工作表明,基于图数据和基于注意力的 GNN 的 ASD 诊断框架可能是 ASD 诊断的有效工具。具有高注意力值的识别功能特征可能作为 ASD 的影像生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验