Suppr超能文献

社会经济和人口因素对新冠病毒检测的影响:来自印度北方邦的证据。

Socioeconomic and Demographic Effects on SARS-CoV-2 Testing: Evidence From the State of Uttar Pradesh, India.

作者信息

Pandey Raghukul R, Agarwal Monika, Wahl Brian P, Garg Tushar, Jain Amita

机构信息

Microbiology, King George's Medical University, Lucknow, IND.

Community Medicine and Public Health, King George's Medical University, Lucknow, IND.

出版信息

Cureus. 2024 May 2;16(5):e59521. doi: 10.7759/cureus.59521. eCollection 2024 May.

Abstract

Background The rapid global spread of SARS-CoV-2 highlighted critical challenges in healthcare systems worldwide, with differences in testing access and utilization becoming particularly evident. This study investigates the socioeconomic and demographic factors influencing SARS-CoV-2 testing service access and utilization during the second wave of the pandemic in Uttar Pradesh (UP), India. Methods The study was conducted from July to October 2023 in two districts of Uttar Pradesh (UP). These districts were chosen because one had the highest and the other the lowest SARS-CoV-2 testing rates per million population as reported from March to June 2021. The study population included consenting adult individuals with self-reported symptoms indicative of SARS-CoV-2 infection during March-June 2021. The study excluded individuals under 18 years, those who did not consent, pregnant or lactating mothers, and those with communication-impairing medical conditions. Data were collected using a structured questionnaire based on Andersen's Behavioural Model of Health Services Use. We used chi-squared tests for all categorical variables to obtain p-values and Poisson regression to identify factors influencing testing rates. Results We screened 4,595 individuals and identified 675 eligible participants for this study. Adjusted prevalence ratios derived from multiple variate Poisson regression models showed that participants in Sitapur had a 0.47 (95% CI: 0.39-0.57) times the prevalence of being tested than those in Lucknow. Furthermore, individuals from other backward castes and scheduled castes had a 1.15 (95% CI: 0.99-1.34) and 1.22 (95% CI: 0.95-1.56) times prevalence of being tested for SARS-CoV-2, respectively, when compared to the general caste population. Scheduled Tribes showed a higher prevalence of being tested, contrasting with existing literature. Households with low, middle, and high income showed a 1.46 (95% CI: 1.12-1.89), 1.52 (95% CI: 1.14-2.02), and 1.73 (95% CI: 1.23-2.45) times the prevalence of SARS-CoV-2 testing compared to those below the poverty line, respectively. Behavioral factors such as media use showed an inverse relationship with testing prevalence; individuals who did not watch TV at all had a 0.83 (95% CI: 0.70-0.99) times prevalence of being tested compared to frequent viewers, and similarly, those not using the internet on mobiles had a 0.82 (95% CI: 0.67-0.99) times prevalence than daily users. Individuals using private healthcare facilities had a 0.87 (95% CI: 0.77-0.99) times prevalence of SARS-CoV-2 testing compared to those using government facilities. Conclusions These findings highlight the importance of public health strategies that address socio-economic and behavioral disparities to ensure equitable testing access across all community groups.

摘要

背景

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)在全球的迅速传播凸显了全球医疗系统面临的重大挑战,检测机会和利用方面的差异变得尤为明显。本研究调查了印度北方邦(UP)第二波疫情期间影响SARS-CoV-2检测服务获取和利用的社会经济及人口因素。

方法

该研究于2023年7月至10月在北方邦的两个区进行。选择这两个区是因为其中一个区的SARS-CoV-2检测率在2021年3月至6月期间是每百万人口中最高的,另一个区是最低的。研究人群包括在2021年3月至6月期间自我报告有SARS-CoV-2感染症状且同意参与的成年个体。该研究排除了18岁以下的个体、不同意参与的个体、孕妇或哺乳期母亲以及有沟通障碍医疗状况的个体。数据通过基于安德森卫生服务利用行为模型的结构化问卷收集。我们对所有分类变量使用卡方检验以获得p值,并使用泊松回归来确定影响检测率的因素。

结果

我们筛查了4595名个体,并确定了675名符合本研究条件的参与者。从多变量泊松回归模型得出的调整患病率比显示,锡塔布尔的参与者接受检测的患病率是勒克瑙参与者的0.47倍(95%置信区间:0.39 - 0.57)。此外,与一般种姓人群相比,其他落后种姓和在册种姓的个体接受SARS-CoV-2检测的患病率分别是其1.15倍(95%置信区间:0.99 - 1.34)和1.22倍(95%置信区间:0.95 - 1.56)。在册部落的检测患病率较高,这与现有文献不同。与贫困线以下的家庭相比,低收入、中等收入和高收入家庭进行SARS-CoV-2检测的患病率分别是其1.46倍(95%置信区间:1.12 - 1.89)、1.52倍(95%置信区间:1.14 - 2.02)和1.73倍(95%置信区间:1.23 - 2.45)。诸如媒体使用等行为因素与检测患病率呈负相关;与经常看电视的人相比,根本不看电视的个体接受检测的患病率是其0.83倍(95%置信区间:0.70 - 0.99),同样,不使用手机上网的个体接受检测的患病率是每日使用者的0.82倍(95%置信区间:0.67 - 0.99)。与使用政府医疗机构的个体相比,使用私立医疗机构的个体接受SARS-CoV-2检测的患病率是其0.87倍(95%置信区间:0.77 - 0.99)。

结论

这些发现凸显了公共卫生策略的重要性,这些策略应解决社会经济和行为差异,以确保所有社区群体都能公平获得检测机会。

相似文献

1
Socioeconomic and Demographic Effects on SARS-CoV-2 Testing: Evidence From the State of Uttar Pradesh, India.
Cureus. 2024 May 2;16(5):e59521. doi: 10.7759/cureus.59521. eCollection 2024 May.
3
Authors' response: Occupation and SARS-CoV-2 infection risk among workers during the first pandemic wave in Germany: potential for bias.
Scand J Work Environ Health. 2022 Sep 1;48(7):588-590. doi: 10.5271/sjweh.4061. Epub 2022 Sep 25.
4
Understanding the Prevalence and Geographic Heterogeneity of SARS-CoV-2 Infection: Findings of the First Serosurvey in Uttar Pradesh, India.
J Epidemiol Glob Health. 2021 Dec;11(4):364-376. doi: 10.1007/s44197-021-00012-6. Epub 2021 Oct 26.
5
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.
10
Community prevalence of SARS-CoV-2 in England from April to November, 2020: results from the ONS Coronavirus Infection Survey.
Lancet Public Health. 2021 Jan;6(1):e30-e38. doi: 10.1016/S2468-2667(20)30282-6. Epub 2020 Dec 11.

引用本文的文献

本文引用的文献

2
Limitations of COVID-19 testing and case data for evidence-informed health policy and practice.
Health Res Policy Syst. 2023 Jan 25;21(1):11. doi: 10.1186/s12961-023-00963-1.
3
Household transmission of COVID-19 cases associated with SARS-CoV-2 delta variant (B.1.617.2): national case-control study.
Lancet Reg Health Eur. 2022 Jan;12:100252. doi: 10.1016/j.lanepe.2021.100252. Epub 2021 Oct 28.
4
Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India.
Science. 2021 Nov 19;374(6570):995-999. doi: 10.1126/science.abj9932. Epub 2021 Oct 14.
5
Determinants of rural-urban differential in healthcare utilization among the elderly population in India.
BMC Public Health. 2021 May 17;21(1):939. doi: 10.1186/s12889-021-10773-1.
6
Testing at scale during the COVID-19 pandemic.
Nat Rev Genet. 2021 Jul;22(7):415-426. doi: 10.1038/s41576-021-00360-w. Epub 2021 May 4.
7
Socioeconomic, demographic and healthcare determinants of the COVID-19 pandemic: an ecological study of Spain.
BMC Public Health. 2021 Mar 29;21(1):606. doi: 10.1186/s12889-021-10658-3.
9
Mass testing for COVID-19.
Lancet Microbe. 2020 Dec;1(8):e317. doi: 10.1016/S2666-5247(20)30205-6. Epub 2020 Dec 7.
10
SARS-CoV-2 testing in low- and middle-income countries: availability and affordability in the private health sector.
Microbes Infect. 2020 Nov-Dec;22(10):511-514. doi: 10.1016/j.micinf.2020.10.005. Epub 2020 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验