Suppr超能文献

迈向即时干预吸烟事件预测

Towards Predicting Smoking Events for Just-in-time Interventions.

作者信息

Yu Hang, Kotlyar Michael, Thuras Paul, Dufresne Sheena, Pakhomov Serguei Vs

机构信息

University of Minnesota, Minneapolis, MN, United States.

出版信息

AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:468-477. eCollection 2024.

Abstract

Consumer-grade heart rate (HR) sensors are widely used for tracking physical and mental health status. We explore the feasibility of using Polar H10 electrocardiogram (ECG) sensor to detect and predict cigarette smoking events in naturalistic settings with several machine learning approaches. We have collected and analyzed data for 28 participants observed over a two-week period. We found that using bidirectional long short-term memory (BiLSTM) with ECG-derived and GPS location input features yielded the highest mean accuracy of 69% for smoking event detection. For predicting smoking events, the highest accuracy of 67% was achieved using the fine-tuned LSTM approach. We also found a significant correlation between accuracy and the number of smoking events available from each participant. Our findings indicate that both detection and prediction of smoking events are feasible but require an individualized approach to training the models, particularly for prediction.

摘要

消费级心率(HR)传感器被广泛用于追踪身心健康状况。我们运用多种机器学习方法,探索使用 Polar H10 心电图(ECG)传感器在自然环境中检测和预测吸烟事件的可行性。我们收集并分析了 28 名参与者在两周时间内的观察数据。我们发现,将双向长短期记忆(BiLSTM)与源自心电图的输入特征和全球定位系统(GPS)位置相结合,在吸烟事件检测方面的平均准确率最高,达到了 69%。对于吸烟事件的预测,使用微调后的长短期记忆(LSTM)方法实现了 67%的最高准确率。我们还发现准确率与每个参与者的吸烟事件数量之间存在显著相关性。我们的研究结果表明,吸烟事件的检测和预测都是可行的,但需要采用个性化方法来训练模型,尤其是在预测方面。

相似文献

1
Towards Predicting Smoking Events for Just-in-time Interventions.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:468-477. eCollection 2024.
3
A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs.
Environ Sci Pollut Res Int. 2024 Jan;31(1):262-279. doi: 10.1007/s11356-023-31148-6. Epub 2023 Nov 28.
6
Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods.
Results Phys. 2021 Aug;27:104495. doi: 10.1016/j.rinp.2021.104495. Epub 2021 Jun 26.
7
Deep learning for predicting respiratory rate from biosignals.
Comput Biol Med. 2022 May;144:105338. doi: 10.1016/j.compbiomed.2022.105338. Epub 2022 Mar 2.
8
A novel combined model for prediction of daily precipitation data using instantaneous frequency feature and bidirectional long short time memory networks.
Environ Sci Pollut Res Int. 2022 Jun;29(28):42899-42912. doi: 10.1007/s11356-022-18874-z. Epub 2022 Jan 29.
9

引用本文的文献

1
Relative importance of temporal and location features in predicting smoking events.
NPJ Digit Med. 2025 Jul 5;8(1):409. doi: 10.1038/s41746-025-01799-5.
2
The recent history and near future of digital health in the field of behavioral medicine: an update on progress from 2019 to 2024.
J Behav Med. 2025 Feb;48(1):120-136. doi: 10.1007/s10865-024-00526-x. Epub 2024 Oct 28.

本文引用的文献

2
SmokingOpp: Detecting the Smoking 'Opportunity' Context Using Mobile Sensors.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Mar;4(1). doi: 10.1145/3380987. Epub 2020 Mar 18.
3
Measuring Heart Rate Variability Using Commercially Available Devices in Healthy Children: A Validity and Reliability Study.
Eur J Investig Health Psychol Educ. 2020 Jan 10;10(1):390-404. doi: 10.3390/ejihpe10010029.
4
Using consumer-wearable technology for remote assessment of physiological response to stress in the naturalistic environment.
PLoS One. 2020 Mar 25;15(3):e0229942. doi: 10.1371/journal.pone.0229942. eCollection 2020.
5
Towards a Smart Smoking Cessation App: A 1D-CNN Model Predicting Smoking Events.
Sensors (Basel). 2020 Feb 17;20(4):1099. doi: 10.3390/s20041099.
7
Cigarette Smoking Detection with An Inertial Sensor and A Smart Lighter.
Sensors (Basel). 2019 Jan 29;19(3):570. doi: 10.3390/s19030570.
10
Classifying smoking urges via machine learning.
Comput Methods Programs Biomed. 2016 Dec;137:203-213. doi: 10.1016/j.cmpb.2016.09.016. Epub 2016 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验