Université of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France.
Biomacromolecules. 2024 Jul 8;25(7):4087-4094. doi: 10.1021/acs.biomac.4c00200. Epub 2024 Jun 3.
Living cells, especially eukaryotic ones, use multicompartmentalization to regulate intra- and extracellular activities, featuring membrane-bound and membraneless organelles. These structures govern numerous biological and chemical processes spatially and temporally. Synthetic cell models, primarily utilizing lipidic and polymeric vesicles, have been developed to carry out cascade reactions within their compartments. However, these reconstructions often segregate membrane-bound and membraneless organelles, neglecting their collaborative role in cellular regulation. To address this, we propose a structural design incorporating microfluidic-produced liposomes housing synthetic membrane-bound organelles made from self-assembled poly(ethylene glycol)--poly(trimethylene carbonate) nanovesicles and synthetic membraneless organelles formed via temperature-sensitive elastin-like polypeptide phase separation. This architecture mirrors natural cellular organization, facilitating a detailed examination of the interactions for a comprehensive understanding of cellular dynamics.
活细胞,尤其是真核细胞,利用多区室化来调节细胞内外的活动,具有膜结合和无膜细胞器。这些结构在空间和时间上控制着许多生物和化学反应。合成细胞模型主要利用脂质体和聚合物囊泡,在其隔室内进行级联反应。然而,这些重建往往将膜结合和无膜细胞器分隔开,忽略了它们在细胞调节中的协作作用。为了解决这个问题,我们提出了一种结构设计,将微流控生产的脂质体与通过自组装聚乙二醇-聚三亚甲基碳酸酯纳米囊泡制成的合成膜结合细胞器以及通过温度敏感弹性蛋白样多肽相分离形成的合成无膜细胞器结合在一起。这种结构模拟了自然细胞组织,便于详细检查相互作用,从而全面了解细胞动态。