Gaikwad Chandrashekhar, Kowsari Daria, Brame Carson, Song Xingrui, Zhang Haimeng, Esposito Martina, Ranadive Arpit, Cappelli Giulio, Roch Nicolas, Levenson-Falk Eli M, Murch Kater W
Department of Physics, Washington University, St. Louis, Missouri 63130, USA.
Center for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, USA.
Phys Rev Lett. 2024 May 17;132(20):200401. doi: 10.1103/PhysRevLett.132.200401.
We utilize a superconducting qubit processor to experimentally probe non-Markovian dynamics of an entangled qubit pair. We prepare an entangled state between two qubits and monitor the evolution of entanglement over time as one of the qubits interacts with a small quantum environment consisting of an auxiliary transmon qubit coupled to its readout cavity. We observe the collapse and revival of the entanglement as a signature of quantum memory effects in the environment. We then engineer the non-Markovianity of the environment by populating its readout cavity with thermal photons to show a transition from non-Markovian to Markovian dynamics, ultimately reaching a regime where the quantum Zeno effect creates a decoherence-free subspace that effectively stabilizes the entanglement between the qubits.
我们利用超导量子比特处理器对纠缠量子比特对的非马尔可夫动力学进行实验探测。我们制备两个量子比特之间的纠缠态,并在其中一个量子比特与由耦合到其读出腔的辅助传输子量子比特组成的小量子环境相互作用时,监测纠缠随时间的演化。我们观察到纠缠的坍缩和复苏,将其作为环境中量子记忆效应的特征。然后,我们通过向读出腔中注入热光子来调控环境的非马尔可夫性,以展示从非马尔可夫动力学向马尔可夫动力学的转变,最终达到一种量子芝诺效应创建一个退相干自由子空间的状态,该子空间有效地稳定了量子比特之间的纠缠。