Suppr超能文献

使用两个带有外力的耦合克尔参量振荡器的偏置伊辛模型。

Biased Ising Model Using Two Coupled Kerr Parametric Oscillators with External Force.

作者信息

Álvarez Pablo, Pittilini Davide, Miserocchi Filippo, Raamamurthy Sathyanarayanan, Margiani Gabriel, Ameye Orjan, Del Pino Javier, Zilberberg Oded, Eichler Alexander

机构信息

Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland.

Department of Physics, University of Konstanz, D-78457 Konstanz, Germany.

出版信息

Phys Rev Lett. 2024 May 17;132(20):207401. doi: 10.1103/PhysRevLett.132.207401.

Abstract

Networks of coupled Kerr parametric oscillators (KPOs) are a leading physical platform for analog solving of complex optimization problems. These systems are colloquially known as "Ising machines." We experimentally and theoretically study such a network under the influence of an external force. The force breaks the collective phase-parity symmetry of the system and competes with the intrinsic coupling in ordering the network configuration, similar to how a magnetic field biases an interacting spin ensemble. Specifically, we demonstrate how the force can be used to control the system, and highlight the crucial role of the phase and symmetry of the force. Our Letter thereby provides a method to create Ising machines with arbitrary bias, extending even to exotic cases that are impossible to engineer in real spin systems.

摘要

耦合克尔参量振荡器(KPO)网络是模拟求解复杂优化问题的主要物理平台。这些系统通俗地被称为“伊辛机”。我们通过实验和理论研究了在外部力影响下的此类网络。该力打破了系统的集体相位奇偶对称性,并在使网络配置有序化方面与固有耦合相互竞争,这类似于磁场如何使相互作用的自旋系综产生偏差。具体而言,我们展示了如何利用该力来控制系统,并强调了力的相位和对称性的关键作用。我们的论文由此提供了一种创建具有任意偏差的伊辛机的方法,甚至扩展到了在实际自旋系统中无法实现的奇异情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验