Nishina Center and Plant Functions Laboratory (Disbanded in March 2004), RIKEN, Wako, Saitama 351-0198, Japan.
Department of Biology, Graduate School of Science and Technology, Sophia University, Kioicho, Chiyoda 102-8554, Japan.
Plant Physiol. 2024 Sep 2;196(1):137-152. doi: 10.1093/plphys/kiae314.
Plastids in vascular plants have various differentiated forms, among which amyloplasts are crucial for starch storage and plant productivity. Despite the vast knowledge of the binary-fission mode of chloroplast division, our understanding of the replication of non-photosynthetic plastids, including amyloplasts, remains limited. Recent studies have suggested the involvement of stromules (stroma-filled tubules) in plastid replication when the division apparatus is faulty. However, details of the underlying mechanism(s) and their relevance to normal processes have yet to be elucidated. Here, we developed a live analysis system for studying amyloplast replication using Arabidopsis (Arabidopsis thaliana) ovule integuments. We showed the full sequence of amyloplast development and demonstrated that wild-type amyloplasts adopt three modes of replication, binary fission, multiple fission, and stromule-mediated fission, via multi-way placement of the FtsZ ring. The minE mutant, with severely inhibited chloroplast division, showed marked heterogeneity in amyloplast size, caused by size-dependent but wild-type modes of plastid fission. The dynamic properties of stromules distinguish the wild-type and minE phenotypes. In minE cells, extended stromules from giant amyloplasts acquired stability, allowing FtsZ ring assembly and constriction, as well as the growth of starch grains therein. Despite hyper-stromule formation, amyloplasts did not proliferate in the ftsZ null mutant. These data clarify the differences between amyloplast and chloroplast replication and demonstrate that the structural plasticity of amyloplasts underlies the multiplicity of their replication processes. Furthermore, this study shows that stromules can generate daughter plastids via the assembly of the FtsZ ring.
植物中的质体有各种不同的分化形式,其中淀粉体对于淀粉的储存和植物的生产力至关重要。尽管我们对叶绿体二分分裂模式有了广泛的了解,但对于非光合质体(包括淀粉体)的复制,我们的理解仍然有限。最近的研究表明,在分裂装置出现故障时,质体复制可能涉及到基质小管(stromules)。然而,其潜在机制的细节及其与正常过程的相关性尚未阐明。在这里,我们使用拟南芥(Arabidopsis thaliana)胚珠珠被开发了一个活体分析系统,用于研究淀粉体的复制。我们展示了淀粉体发育的完整过程,并证明了野生型淀粉体通过 FtsZ 环的多向定位,采用二分分裂、多次分裂和基质小管介导的分裂三种模式进行复制。minE 突变体,其叶绿体分裂受到严重抑制,淀粉体大小表现出显著的不均一性,这是由于大小依赖但野生型的质体分裂模式造成的。基质小管的动态特性区分了野生型和 minE 表型。在 minE 细胞中,来自巨型淀粉体的延伸基质小管获得了稳定性,允许 FtsZ 环的组装和收缩,以及其中淀粉粒的生长。尽管基质小管的形成过度,但在 ftsZ 缺失突变体中,淀粉体并没有增殖。这些数据阐明了淀粉体和叶绿体复制之间的差异,并表明淀粉体的结构可塑性是其多种复制过程的基础。此外,这项研究表明,基质小管可以通过 FtsZ 环的组装产生子质体。