Department of Plant Physiology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, Halle 06120, Germany.
Department of Biochemistry of Plant Interactions, Leibniz Institute for Plant Biochemistry, Weinbergweg 10, Halle 06120, Germany.
Plant Cell Physiol. 2024 May 14;65(4):618-630. doi: 10.1093/pcp/pcad098.
In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D. We combine these imaging modalities with mathematical modeling and new in planta experiments to demonstrate how different stromule varieties (single or multiple, linear or branching) could be employed to optimize different aspects of inter-organelle interaction capacity in this 2D space. We found that stromule formation and branching provide a proportionally higher benefit to interaction capacity in 2D than in 3D. Additionally, this benefit depends on optimal plastid spacing. We hypothesize that cells can promote the formation of different stromule architectures in the quasi-2D cytoplasm to optimize their interaction interface to meet specific requirements. These results provide new insight into the mechanisms underlying the transition from low to high stromule numbers, the consequences for interaction with smaller organelles, how plastid access and plastid to nucleus signaling are balanced and the impact of plastid density on organelle interaction.
在植物细胞中,质体形成称为质体丝状体的细长延伸部分,但其调节和目的尚不清楚。在这里,我们定量探讨了不同的质体丝状体结构如何提高质体与其他细胞器相互作用的能力:增加细胞器之间相互作用和生物分子交换的有效空间。有趣的是,电子显微镜和共聚焦成像显示,拟南芥和本氏烟表皮细胞的细胞质非常薄(在没有细胞器的区域约为 100nm),这意味着细胞器之间的相互作用实际上发生在 2D 中。我们将这些成像方式与数学建模和新的体内实验相结合,证明了不同的质体丝状体(单个或多个、线性或分支)如何能够用于优化这种 2D 空间中细胞器相互作用能力的不同方面。我们发现,与 3D 相比,质体丝状体的形成和分支为 2D 中的相互作用能力提供了更高的比例效益。此外,这种效益取决于最佳质体间距。我们假设细胞可以在准 2D 细胞质中促进不同质体丝状体结构的形成,以优化它们的相互作用界面,以满足特定要求。这些结果为从低到高的质体丝状体数量的转变机制、与较小细胞器相互作用的后果、质体进入和质体到核信号的平衡以及质体密度对细胞器相互作用的影响提供了新的见解。