Suppr超能文献

甲状腺相关眼病患者默认模式网络内动态局部一致性的改变。

Alterations in dynamic regional homogeneity within default mode network in patients with thyroid-associated ophthalmopathy.

机构信息

Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.

School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, China.

出版信息

Neuroreport. 2024 Aug 7;35(11):702-711. doi: 10.1097/WNR.0000000000002056. Epub 2024 Jun 1.

Abstract

Thyroid-associated ophthalmopathy (TAO) is a significant autoimmune eye disease known for causing exophthalmos and substantial optic nerve damage. Prior investigations have solely focused on static functional MRI (fMRI) scans of the brain in TAO patients, neglecting the assessment of temporal variations in local brain activity. This study aimed to characterize alterations in dynamic regional homogeneity (dReHo) in TAO patients and differentiate between TAO patients and healthy controls using support vector machine (SVM) classification. Thirty-two patients with TAO and 32 healthy controls underwent resting-state fMRI scans. We calculated dReHo using sliding-window methods to evaluate changes in regional brain activity and compared these findings between the two groups. Subsequently, we employed SVM, a machine learning algorithm, to investigate the potential use of dReHo maps as diagnostic markers for TAO. Compared to healthy controls, individuals with active TAO demonstrated significantly higher dReHo values in the right angular gyrus, left precuneus, right inferior parietal as well as the left superior parietal gyrus. The SVM model demonstrated an accuracy ranging from 65.62 to 68.75% in distinguishing between TAO patients and healthy controls based on dReHo variability in these identified brain regions, with an area under the curve of 0.70 to 0.76. TAO patients showed increased dReHo in default mode network-related brain regions. The accuracy of classifying TAO patients and healthy controls based on dReHo was notably high. These results offer new insights for investigating the pathogenesis and clinical diagnostic classification of individuals with TAO.

摘要

甲状腺相关眼病(TAO)是一种重要的自身免疫性眼病,其特征为眼球突出和严重的视神经损伤。先前的研究仅关注 TAO 患者大脑的静态功能磁共振成像(fMRI)扫描,而忽略了对局部脑活动时间变化的评估。本研究旨在通过支持向量机(SVM)分类来描述 TAO 患者的动态局部一致性(dReHo)变化,并将 TAO 患者与健康对照组区分开来。32 例 TAO 患者和 32 例健康对照者接受了静息态 fMRI 扫描。我们使用滑动窗口方法计算 dReHo,以评估区域脑活动的变化,并比较两组之间的差异。随后,我们采用 SVM,一种机器学习算法,研究 dReHo 图谱作为 TAO 诊断标志物的潜在用途。与健康对照组相比,活动期 TAO 患者右侧角回、左侧楔前叶、右侧顶下小叶以及左侧顶上小叶的 dReHo 值显著升高。SVM 模型基于这些确定的脑区的 dReHo 变异性,在区分 TAO 患者和健康对照组方面的准确率为 65.62%至 68.75%,曲线下面积为 0.70 至 0.76。TAO 患者在默认模式网络相关脑区的 dReHo 值升高。基于 dReHo 对 TAO 患者和健康对照组进行分类的准确率非常高。这些结果为研究 TAO 患者的发病机制和临床诊断分类提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验