Suppr超能文献

甲状腺相关性眼病中特定的静态和动态功能网络连接变化及其使用机器学习的预测价值

Specific static and dynamic functional network connectivity changes in thyroid-associated ophthalmopathy and it predictive values using machine learning.

作者信息

Liu Hao, Zhong Yu-Lin, Huang Xin

机构信息

School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.

出版信息

Front Neurosci. 2024 Aug 23;18:1429084. doi: 10.3389/fnins.2024.1429084. eCollection 2024.

Abstract

BACKGROUND

Thyroid-associated ophthalmopathy (TAO) is a prevalent autoimmune disease characterized by ocular symptoms like eyelid retraction and exophthalmos. Prior neuroimaging studies have revealed structural and functional brain abnormalities in TAO patients, along with central nervous system symptoms such as cognitive deficits. Nonetheless, the changes in the static and dynamic functional network connectivity of the brain in TAO patients are currently unknown. This study delved into the modifications in static functional network connectivity (sFNC) and dynamic functional network connectivity (dFNC) among thyroid-associated ophthalmopathy patients using independent component analysis (ICA).

METHODS

Thirty-two patients diagnosed with thyroid-associated ophthalmopathy and 30 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. ICA method was utilized to extract the sFNC and dFNC changes of both groups.

RESULTS

In comparison to the HC group, the TAO group exhibited significantly increased intra-network functional connectivity (FC) in the right inferior temporal gyrus of the executive control network (ECN) and the visual network (VN), along with significantly decreased intra-network FC in the dorsal attentional network (DAN), the default mode network (DMN), and the left middle cingulum of the ECN. On the other hand, FNC analysis revealed substantially reduced connectivity intra- VN and inter- cerebellum network (CN) and high-level cognitive networks (DAN, DMN, and ECN) in the TAO group compared to the HC group. Regarding dFNC, TAO patients displayed abnormal connectivity across all five states, characterized by notably reduced intra-VN connectivity and CN connectivity with high-level cognitive networks (DAN, DMN, and ECN), alongside compensatory increased connectivity between DMN and low-level perceptual networks (VN and basal ganglia network). No significant differences were observed between the two groups for the three dynamic temporal metrics. Furthermore, excluding the classification outcomes of FC within VN (with an accuracy of 51.61% and area under the curve of 0.35208), the FC-based support vector machine (SVM) model demonstrated improved performance in distinguishing between TAO and HC, achieving accuracies ranging from 69.35 to 77.42% and areas under the curve from 0.68229 to 0.81667. The FNC-based SVM classification yielded an accuracy of 61.29% and an area under the curve of 0.57292.

CONCLUSION

In summary, our study revealed that significant alterations in the visual network and high-level cognitive networks. These discoveries contribute to our understanding of the neural mechanisms in individuals with TAO, offering a valuable target for exploring future central nervous system changes in thyroid-associated eye diseases.

摘要

背景

甲状腺相关性眼病(TAO)是一种常见的自身免疫性疾病,其特征为眼睑退缩和眼球突出等眼部症状。先前的神经影像学研究显示,TAO患者存在大脑结构和功能异常,以及认知缺陷等中枢神经系统症状。然而,目前尚不清楚TAO患者大脑静态和动态功能网络连接的变化情况。本研究采用独立成分分析(ICA)探究甲状腺相关性眼病患者静态功能网络连接(sFNC)和动态功能网络连接(dFNC)的改变。

方法

32例诊断为甲状腺相关性眼病的患者和30名健康对照者(HCs)接受静息态功能磁共振成像(rs-fMRI)扫描。采用ICA方法提取两组的sFNC和dFNC变化。

结果

与HC组相比,TAO组在执行控制网络(ECN)和视觉网络(VN)的右侧颞下回内网络功能连接(FC)显著增加,而在背侧注意网络(DAN)、默认模式网络(DMN)以及ECN的左侧中央扣带中内网络FC显著降低。另一方面,FNC分析显示,与HC组相比,TAO组VN内以及小脑网络(CN)与高级认知网络(DAN、DMN和ECN)之间的连接性大幅降低。关于dFNC,TAO患者在所有五个状态下均表现出异常连接,其特征为VN内连接性以及CN与高级认知网络(DAN、DMN和ECN)之间的连接性显著降低,同时DMN与低级感知网络(VN和基底神经节网络)之间的连接性代偿性增加。两组在三个动态时间指标上未观察到显著差异。此外,排除VN内FC的分类结果(准确率为51.61%,曲线下面积为0.35208)后,基于FC的支持向量机(SVM)模型在区分TAO和HC方面表现出更好的性能,准确率在69.35%至77.42%之间,曲线下面积在0.68229至0.81667之间。基于FNC的SVM分类准确率为61.29%,曲线下面积为0.57292。

结论

总之,我们的研究表明视觉网络和高级认知网络存在显著改变。这些发现有助于我们理解TAO患者的神经机制,为探索甲状腺相关性眼病未来中枢神经系统变化提供了有价值的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cc5/11377277/c83afffb7810/fnins-18-1429084-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验