Novikova Tatiana, Ovchinnikov Alexey, Pogudin Gleb, Ramella-Roman Jessica C
LPICM, CNRS, Ecole polytechnique, IP Paris, Route de Saclay, Palaiseau, 91120, France.
Department of Biomedical Engineering, Florida International University, West Flagler Street, Miami, FL 33174, USA.
Bioinformatics. 2024 Jun 3;40(7). doi: 10.1093/bioinformatics/btae348.
Imaging Mueller polarimetry has already proved its potential for biomedicine, remote sensing and metrology. The real-time applications of this modality require both video rate image acquisition and fast data post-processing algorithms. First, one must check the physical realizability of the experimental Mueller matrices in order to filter out non-physical data, ie to test the positive semi-definiteness of the 4 × 4 Hermitian coherency matrix calculated from the elements of corresponding Mueller matrix pixel-wise. For this purpose, we compared the execution time for the calculations of i) eigenvalues, ii) Cholesky decomposition, iii) Sylvester's criterion, and iv) coefficients of the characteristic polynomial (two different approaches) of the Hermitian coherency matrix, all calculated for the experimental Mueller matrix images (600 pixels × 700 pixels) of mouse uterine cervix. The calculations were performed using C ++ and Julia programming languages.
Our results showed the superiority of the algorithm iv) based on the simplification via Pauli matrices over other algorithms for our dataset. The sequential implementation of latter algorithm on a single core already satisfies the requirements of real-time polarimetric imaging. This can be further amplified by the proposed parallelization (e.g., we achieve a 5-fold speed up on 6 cores).
The source codes of the algorithms and experimental data are available at https://github.com/pogudingleb/mueller_matrices.
成像穆勒偏振测量法已证明其在生物医学、遥感和计量学方面的潜力。这种方法的实时应用需要视频速率图像采集和快速数据后处理算法。首先,必须检查实验穆勒矩阵的物理可实现性,以便滤除非物理数据,即按像素测试从相应穆勒矩阵元素计算出的4×4厄米特相干矩阵的半正定性。为此,我们比较了对小鼠子宫颈的实验穆勒矩阵图像(600像素×700像素)计算厄米特相干矩阵的以下各项的执行时间:i)特征值,ii)乔列斯基分解,iii)西尔维斯特准则,以及iv)特征多项式的系数(两种不同方法)。计算使用C++和Julia编程语言进行。
我们的结果表明,对于我们的数据集,基于泡利矩阵简化的算法iv)优于其他算法。后一种算法在单核上的顺序实现已经满足实时偏振成像的要求。通过所提出的并行化可以进一步提高速度(例如,我们在6核上实现了5倍的加速)。
算法的源代码和实验数据可在https://github.com/pogudingleb/mueller_matrices获取。