Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom.
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.
Proc Natl Acad Sci U S A. 2024 Jun 11;121(24):e2218927121. doi: 10.1073/pnas.2218927121. Epub 2024 Jun 3.
Oomycete protists share phenotypic similarities with fungi, including the ability to cause plant diseases, but branch in a distant region of the tree of life. It has been suggested that multiple horizontal gene transfers (HGTs) from fungi-to-oomycetes contributed to the evolution of plant-pathogenic traits. These HGTs are predicted to include secreted proteins that degrade plant cell walls, a barrier to pathogen invasion and a rich source of carbohydrates. Using a combination of phylogenomics and functional assays, we investigate the diversification of a horizontally transferred xyloglucanase gene family in the model oomycete species . Our analyses detect 11 xyloglucanase paralogs retained in . Using heterologous expression in yeast, we show consistent evidence that eight of these paralogs have xyloglucanase function, including variants with distinct protein characteristics, such as a long-disordered C-terminal extension that can increase xyloglucanase activity. The functional variants analyzed subtend a phylogenetic node close to the fungi-to-oomycete transfer, suggesting the horizontally transferred gene was a bona fide xyloglucanase. Expression of three xyloglucanase paralogs in triggers high-reactive oxygen species (ROS) generation, while others inhibit ROS responses to bacterial immunogens, demonstrating that the paralogs differentially stimulate pattern-triggered immunity. Mass spectrometry of detectable enzymatic products demonstrates that some paralogs catalyze the production of variant breakdown profiles, suggesting that secretion of variant xyloglucanases increases efficiency of xyloglucan breakdown as well as diversifying the damage-associated molecular patterns released. We suggest that this pattern of neofunctionalization and the variant host responses represent an aspect of the Red Queen host-pathogen coevolutionary dynamic.
卵菌原生动物与真菌具有表型相似性,包括引起植物疾病的能力,但在生命之树的一个遥远区域分支。有人提出,真菌到卵菌的多次水平基因转移 (HGT) 促成了植物病原性状的进化。这些 HGT 预计包括降解植物细胞壁的分泌蛋白,细胞壁是病原体入侵的障碍,也是碳水化合物的丰富来源。我们使用系统发生基因组学和功能测定的组合,研究了模型卵菌物种 中水平转移的木葡聚糖酶基因家族的多样化。我们的分析检测到 保留在 中的 11 个木葡聚糖酶旁系同源物。通过在酵母中的异源表达,我们一致证明其中 8 个旁系同源物具有木葡聚糖酶功能,包括具有独特蛋白质特征的变体,例如可以增加木葡聚糖酶活性的长无序 C 端延伸。分析的功能变体位于接近真菌到卵菌转移的分支点附近,这表明水平转移的基因是真正的木葡聚糖酶。在 中表达三个木葡聚糖酶旁系同源物会引发高活性氧 (ROS) 生成,而其他旁系同源物则抑制对细菌免疫原的 ROS 反应,表明这些旁系同源物差异刺激模式触发的免疫。可检测酶产物的质谱分析表明,一些旁系同源物催化产生了不同的分解谱,这表明变体木葡聚糖酶的分泌提高了木葡聚糖分解的效率,并使释放的损伤相关分子模式多样化。我们认为,这种新功能化模式和变体宿主反应代表了红皇后宿主-病原体共同进化动态的一个方面。