Suppr超能文献

糖苷外切水解酶中水分子网络的结构与动力学是催化效率的基础。

The structure and dynamics of water molecule networks underlie catalytic efficiency in a glycoside exo-hydrolase.

作者信息

Luang Sukanya, Fernández-Luengo Xavier, Streltsov Victor A, Maréchal Jean-Didier, Masgrau Laura, Hrmova Maria

机构信息

School of Agriculture, Food and Wine, and Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, SA, Australia.

Department de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.

出版信息

Commun Biol. 2025 May 10;8(1):729. doi: 10.1038/s42003-025-08113-9.

Abstract

Glycoside hydrolases break glycosidic bonds by transferring a water molecule onto the glycosidic oxygen of carbohydrates, but on the nanoscale, the dynamics of water molecules remains unclear. We investigate the role of the non-nucleophilic E220 glutamate, essential for maintaining the water molecule network in a family 3 β-D-glucan glucohydrolase, but not involved directly in catalysis. Kinetic data disclose that the E220A mutant retains substrate poly-specificity but has drastically reduced catalytic efficiency compared to the wild-type. High-resolution structures in-complex with a hydrolytic product and a mechanism-based inhibitor reveal that in wild-type, the concatenated water molecules near acid/base E491 and neighbouring N219 and E220 form a harmonised network. In contrast, in the E220A mutant, this network is uncoordinated. Computational models of covalent complexes show that water flux through the wild-type protein correlates with high catalytic efficiency dissimilar to E220A, where this correlation is lost. Ancestral sequence reconstructions of family 3 enzymes divulge the evolutionary conservation of residues participating in water molecule networks, which underlie substrate-product-assisted processivity. Our findings provide a blueprint for the dynamics of catalysis mediated by hydrolytic enzymes, which could inspire bioengineering to create a sustainable bio-economy.

摘要

糖苷水解酶通过将水分子转移到碳水化合物的糖苷氧上来断裂糖苷键,但在纳米尺度上,水分子的动态变化仍不清楚。我们研究了非亲核性的E220谷氨酸的作用,它对于维持3型β-D-葡聚糖葡萄糖水解酶中的水分子网络至关重要,但不直接参与催化作用。动力学数据表明,E220A突变体保留了底物多特异性,但与野生型相比,催化效率大幅降低。与水解产物和基于机制的抑制剂形成复合物的高分辨率结构表明,在野生型中,靠近酸/碱E491以及相邻的N219和E220的串联水分子形成了一个协调的网络。相比之下,在E220A突变体中,这个网络是不协调的。共价复合物的计算模型表明,野生型蛋白中的水通量与高催化效率相关,这与E220A不同,在E220A中这种相关性丧失。3型酶的祖先序列重建揭示了参与水分子网络的残基的进化保守性,这些残基是底物-产物辅助连续性的基础。我们的研究结果为水解酶介导的催化动力学提供了一个蓝图,这可能会激发生物工程创造一个可持续的生物经济。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a27a/12065899/96e19ff6f0dd/42003_2025_8113_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验