注意 3D U-NET 用于宫颈癌高剂量率近距离治疗的剂量分布预测:方向调制近距离治疗后装施源器。
Attention 3D U-NET for dose distribution prediction of high-dose-rate brachytherapy of cervical cancer: Direction modulated brachytherapy tandem applicator.
机构信息
Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
Department of Medical Physics, Al-Neelain University, Khartoum, Sudan.
出版信息
Med Phys. 2024 Aug;51(8):5593-5603. doi: 10.1002/mp.17238. Epub 2024 Jun 3.
BACKGROUND
Direction Modulated Brachytherapy (DMBT) enables conformal dose distributions. However, clinicians may face challenges in creating viable treatment plans within a fast-paced clinical setting, especially for a novel technology like DMBT, where cumulative clinical experience is limited. Deep learning-based dose prediction methods have emerged as effective tools for enhancing efficiency.
PURPOSE
To develop a voxel-wise dose prediction model using an attention-gating mechanism and a 3D UNET for cervical cancer high-dose-rate (HDR) brachytherapy treatment planning with DMBT six-groove tandems with ovoids or ring applicators.
METHODS
A multi-institutional cohort of 122 retrospective clinical HDR brachytherapy plans treated to a prescription dose in the range of 4.8-7.0 Gy/fraction was used. A DMBT tandem model was constructed and incorporated onto a research version of BrachyVision Treatment Planning System (BV-TPS) as a 3D solid model applicator and retrospectively re-planned all cases by seasoned experts. Those plans were randomly divided into 64:16:20 as training, validating, and testing cohorts, respectively. Data augmentation was applied to the training and validation sets to increase the size by a factor of 4. An attention-gated 3D UNET architecture model was developed to predict full 3D dose distributions based on high-risk clinical target volume (CTV) and organs at risk (OARs) contour information. The model was trained using the mean absolute error loss function, Adam optimization algorithm, a learning rate of 0.001, 250 epochs, and a batch size of eight. In addition, a baseline UNET model was trained similarly for comparison. The model performance was evaluated on the testing dataset by analyzing the outcomes in terms of mean dose values and derived dose-volume-histogram indices from 3D dose distributions and comparing the generated dose distributions against the ground-truth dose distributions using dose statistics and clinically meaningful dosimetric indices.
RESULTS
The proposed attention-gated 3D UNET model showed competitive accuracy in predicting 3D dose distributions that closely resemble the ground-truth dose distributions. The average values of the mean absolute errors were 1.82 ± 29.09 Gy (vs. 6.41 ± 20.16 Gy for a baseline UNET) in CTV, 0.89 ± 1.25 Gy (vs. 0.94 ± 3.96 Gy for a baseline UNET) in the bladder, 0.33 ± 0.67 Gy (vs. 0.53 ± 1.66 Gy for a baseline UNET) in the rectum, and 0.55 ± 1.57 Gy (vs. 0.76 ± 2.89 Gy for a baseline UNET) in the sigmoid. The results showed that the mean absolute error (MAE) for the bladder, rectum, and sigmoid were 0.22 ± 1.22 Gy (3.62%) (p = 0.015), 0.21 ± 1.06 Gy (2.20%) (p = 0.172), and -0.03 ± 0.54 Gy (1.13%) (p = 0.774), respectively. The MAE for D, V, and V of the CTV were 0.46 ± 2.44 Gy (8.14%) (p = 0.018), 0.57 ± 11.25% (5.23%) (p = 0.283), and -0.43 ± 19.36% (4.62%) (p = 0.190), respectively. The proposed model needs less than 5 s to predict a full 3D dose distribution of 64 × 64 × 64 voxels for any new patient plan, thus making it sufficient for near real-time applications and aiding with decision-making in the clinic.
CONCLUSIONS
Attention gated 3D-UNET model demonstrated a capability in predicting voxel-wise dose prediction, in comparison to 3D UNET, for DMBT intracavitary brachytherapy planning. The proposed model could be used to obtain dose distributions for near real-time decision-making before DMBT planning and quality assurance. This will guide future automated planning, making the workflow more efficient and clinically viable.
背景
方向调制近距离放射治疗(DMBT)能够实现适形剂量分布。然而,临床医生在为新型技术(如 DMBT)制定可行的治疗计划时可能会面临挑战,因为他们在这方面的经验有限。基于深度学习的剂量预测方法已成为提高效率的有效工具。
目的
为宫颈癌高剂量率(HDR)近距离放射治疗计划开发一种使用注意门控机制和 3D UNET 的剂量预测模型,适用于带有卵圆形或环形施源器的 DMBT 六槽施源器。
方法
使用多机构回顾性队列,包括 122 例接受处方剂量为 4.8-7.0 Gy/分次的 HDR 近距离放射治疗的临床病例。构建了 DMBT 施源器模型,并将其整合到 BrachyVision 治疗计划系统(BV-TPS)的研究版本中,作为 3D 实体模型施源器,并由经验丰富的专家对所有病例进行回顾性重新计划。这些计划被随机分为训练集、验证集和测试集,比例分别为 64:16:20。对训练集和验证集进行数据增强,将其大小增加 4 倍。开发了一种具有注意门控的 3D UNET 架构模型,根据高危临床靶区(CTV)和危及器官(OAR)轮廓信息预测全 3D 剂量分布。该模型使用平均绝对误差损失函数、Adam 优化算法、学习率 0.001、250 个epoch 和批处理大小 8 进行训练。此外,还训练了一个基线 UNET 模型进行比较。通过分析 3D 剂量分布的剂量值和衍生的剂量体积直方图指标,并使用剂量统计和有意义的剂量学指标比较生成的剂量分布与真实剂量分布,评估测试数据集上模型的性能。
结果
所提出的注意门控 3D UNET 模型在预测 3D 剂量分布方面表现出了竞争力,生成的剂量分布与真实剂量分布非常相似。CTV 的平均绝对误差(MAE)平均值为 1.82±29.09 Gy(基线 UNET 为 6.41±20.16 Gy),膀胱的 MAE 平均值为 0.89±1.25 Gy(基线 UNET 为 0.94±3.96 Gy),直肠的 MAE 平均值为 0.33±0.67 Gy(基线 UNET 为 0.53±1.66 Gy),乙状结肠的 MAE 平均值为 0.55±1.57 Gy(基线 UNET 为 0.76±2.89 Gy)。结果表明,膀胱、直肠和乙状结肠的 MAE 分别为 0.22±1.22 Gy(3.62%)(p=0.015)、0.21±1.06 Gy(2.20%)(p=0.172)和-0.03±0.54 Gy(1.13%)(p=0.774)。CTV 的 D、V 和 V 的 MAE 分别为 0.46±2.44 Gy(8.14%)(p=0.018)、0.57±11.25%(5.23%)(p=0.283)和-0.43±19.36%(4.62%)(p=0.190)。该模型预测新患者的全 3D 剂量分布(64×64×64 体素)所需时间不到 5 秒,因此足以实现实时应用,并有助于临床决策。
结论
与 3D UNET 相比,注意门控 3D-UNET 模型在 DMBT 腔内近距离放射治疗计划中能够进行基于体素的剂量预测。该模型可用于在 DMBT 计划和质量保证之前获得剂量分布,以进行实时决策。这将指导未来的自动化计划,使工作流程更加高效和可行。