文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习剂量预测模型在宫颈癌容积旋转调强放疗中的对比研究。

A Comparative Study of Deep Learning Dose Prediction Models for Cervical Cancer Volumetric Modulated Arc Therapy.

机构信息

Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Army Medical University (Third Military Medical University), Chongqing, China.

Department of Radiation Oncology, Zigong Disease Prevention and Control Center Mental Health Center, Zigong First People's Hospital, Zigong, Sichuan, China.

出版信息

Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241242654. doi: 10.1177/15330338241242654.


DOI:10.1177/15330338241242654
PMID:38584413
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11005497/
Abstract

Deep learning (DL) is widely used in dose prediction for radiation oncology, multiple DL techniques comparison is often lacking in the literature. To compare the performance of 4 state-of-the-art DL models in predicting the voxel-level dose distribution for cervical cancer volumetric modulated arc therapy (VMAT). A total of 261 patients' plans for cervical cancer were retrieved in this retrospective study. A three-channel feature map, consisting of a planning target volume (PTV) mask, organs at risk (OARs) mask, and CT image was fed into the three-dimensional (3D) U-Net and its 3 variants models. The data set was randomly divided into 80% as training-validation and 20% as testing set, respectively. The model performance was evaluated on the 52 testing patients by comparing the generated dose distributions against the clinical approved ground truth (GT) using mean absolute error (MAE), dose map difference (GT-predicted), clinical dosimetric indices, and dice similarity coefficients (DSC). The 3D U-Net and its 3 variants DL models exhibited promising performance with a maximum MAE within the PTV 0.83% ± 0.67% in the UNETR model. The maximum MAE among the OARs is the left femoral head, which reached 6.95% ± 6.55%. For the body, the maximum MAE was observed in UNETR, which is 1.19 ± 0.86%, and the minimum MAE was 0.94 ± 0.85% for 3D U-Net. The average error of the Dmean difference for different OARs is within 2.5 Gy. The average error of V40 difference for the bladder and rectum is about 5%. The mean DSC under different isodose volumes was above 90%. DL models can predict the voxel-level dose distribution accurately for cervical cancer VMAT treatment plans. All models demonstrated almost analogous performance for voxel-wise dose prediction maps. Considering all voxels within the body, 3D U-Net showed the best performance. The state-of-the-art DL models are of great significance for further clinical applications of cervical cancer VMAT.

摘要

深度学习(DL)在放射肿瘤学中的剂量预测中得到了广泛应用,但文献中往往缺乏对多种 DL 技术的比较。本研究旨在比较 4 种最先进的 DL 模型在预测宫颈癌容积调强弧形治疗(VMAT)中体素级剂量分布的性能。

本回顾性研究共检索了 261 例宫颈癌患者的计划。一个三通道特征图,由一个计划靶区(PTV)掩模、危及器官(OARs)掩模和 CT 图像组成,被输入到三维(3D)U-Net 及其 3 个变体模型中。数据集随机分为 80%作为训练-验证集和 20%作为测试集。通过将生成的剂量分布与临床批准的真实值(GT)进行比较,使用平均绝对误差(MAE)、剂量图差异(GT-预测)、临床剂量学指标和骰子相似系数(DSC)评估模型在 52 例测试患者中的性能。3D U-Net 及其 3 个变体 DL 模型表现出良好的性能,在 UNETR 模型中,PTV 的最大 MAE 为 0.83%±0.67%。OARs 中最大的 MAE 是左侧股骨头,达到 6.95%±6.55%。对于身体,UNETR 中观察到的最大 MAE 为 1.19%±0.86%,3D U-Net 的最小 MAE 为 0.94%±0.85%。不同 OARs 的 Dmean 差异的平均误差在 2.5Gy 以内。膀胱和直肠的 V40 差异的平均误差约为 5%。不同等剂量体积下的平均 DSC 均高于 90%。

DL 模型可以准确预测宫颈癌 VMAT 治疗计划的体素级剂量分布。所有模型在体素剂量预测图上表现出几乎相同的性能。考虑到体内所有体素,3D U-Net 表现出最佳性能。最先进的 DL 模型对宫颈癌 VMAT 的进一步临床应用具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/92d2bfd03014/10.1177_15330338241242654-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/3e6ba1b9a2d5/10.1177_15330338241242654-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/5c760a387c4d/10.1177_15330338241242654-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/6f49f44bf082/10.1177_15330338241242654-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/089fa46babd9/10.1177_15330338241242654-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/1e67ef36a5df/10.1177_15330338241242654-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/92d2bfd03014/10.1177_15330338241242654-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/3e6ba1b9a2d5/10.1177_15330338241242654-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/5c760a387c4d/10.1177_15330338241242654-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/6f49f44bf082/10.1177_15330338241242654-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/089fa46babd9/10.1177_15330338241242654-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/1e67ef36a5df/10.1177_15330338241242654-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ffd/11005497/92d2bfd03014/10.1177_15330338241242654-fig6.jpg

相似文献

[1]
A Comparative Study of Deep Learning Dose Prediction Models for Cervical Cancer Volumetric Modulated Arc Therapy.

Technol Cancer Res Treat. 2024

[2]
Neural network dose prediction for cervical brachytherapy: Overcoming data scarcity for applicator-specific models.

Med Phys. 2024-7

[3]
A novel network architecture for post-applicator placement CT auto-contouring in cervical cancer HDR brachytherapy.

Med Phys. 2025-7

[4]
Geometrically focused training and evaluation of organs-at-risk segmentation via deep learning.

Med Phys. 2025-7

[5]
Simulation-free workflow for lattice radiation therapy using deep learning predicted synthetic computed tomography: A feasibility study.

J Appl Clin Med Phys. 2025-7

[6]
Automatic contour quality assurance using deep-learning based contours.

Phys Med Biol. 2025-7-16

[7]
Fully Automated Online Adaptive Radiation Therapy Decision-Making for Cervical Cancer Using Artificial Intelligence.

Int J Radiat Oncol Biol Phys. 2025-7-15

[8]
Enhancing Delivery Efficiency on the Magnetic Resonance-Linac: A Comprehensive Evaluation of Prostate Stereotactic Body Radiation Therapy Using Volumetric Modulated Arc Therapy.

Int J Radiat Oncol Biol Phys. 2025-7-15

[9]
Evaluation of the efficacy of automated machine learning enhanced planning system and a comparative analysis with manual planning system.

J Cancer Res Ther. 2025-4-1

[10]
Intensity-modulated Radiotherapy Versus Volumetric Modulated Arc Therapy in Head and Neck Cancers: A Comparative Analysis of Compliance, Toxicities and Dosimetric Parameters.

Cureus. 2025-6-16

引用本文的文献

[1]
A comparative analysis of deep learning architectures with data augmentation and multichannel input for locoregional breast cancer radiotherapy.

J Appl Clin Med Phys. 2025-6

[2]
Uninvolved liver dose prediction in stereotactic body radiation therapy for liver cancer based on the neural network method.

World J Gastrointest Oncol. 2024-10-15

本文引用的文献

[1]
A comparative study of deep learning-based knowledge-based planning methods for 3D dose distribution prediction of head and neck.

J Appl Clin Med Phys. 2023-9

[2]
Direct Dose Prediction With Deep Learning for Postoperative Cervical Cancer Underwent Volumetric Modulated Arc Therapy.

Technol Cancer Res Treat. 2023

[3]
Sub-second photon dose prediction via transformer neural networks.

Med Phys. 2023-5

[4]
Deep learning architecture with transformer and semantic field alignment for voxel-level dose prediction on brain tumors.

Med Phys. 2023-2

[5]
Dose prediction for cervical cancer VMAT patients with a full-scale 3D-cGAN-based model and the comparison of different input data on the prediction results.

Radiat Oncol. 2022-11-13

[6]
Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR.

PLoS One. 2022

[7]
Application of UNETR for automatic cochlear segmentation in temporal bone CTs.

Auris Nasus Larynx. 2023-4

[8]
Attention-augmented U-Net (AA-U-Net) for semantic segmentation.

Signal Image Video Process. 2023

[9]
RatUNet: residual U-Net based on attention mechanism for image denoising.

PeerJ Comput Sci. 2022-5-10

[10]
TransDose: a transformer-based UNet model for fast and accurate dose calculation for MR-LINACs.

Phys Med Biol. 2022-6-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索