Department of Plant Protection, Faculty of Agriculture, Al-Baath University, Homs, Syria.
Sci Rep. 2024 Jun 3;14(1):12700. doi: 10.1038/s41598-024-63708-2.
Fungicide mixtures are an effective strategy in delaying the development of fungicide resistance. In this research, a fixed ratio ray design method was used to generate fifty binary mixtures of five fungicides with diverse modes of action. The interaction of these mixtures was then analyzed using CA and IA models. QSAR modeling was conducted to assess their fungicidal activity through multiple linear regression (MLR), support vector machine (SVM), and artificial neural network (ANN). Most mixtures exhibited additive interaction, with the CA model proving more accurate than the IA model in predicting fungicidal activity. The MLR model showed a good linear correlation between selected theoretical descriptors by the genetic algorithm and fungicidal activity. However, both ML-based models demonstrated better predictive performance than the MLR model. The ANN model showed slightly better predictability than the SVM model, with R and R at 0.91 and 0.81, respectively. For external validation, the R value was 0.845. In contrast, the SVM model had values of 0.91, 0.78, and 0.77 for the same metrics. In conclusion, the proposed ML-based model can be a valuable tool for developing potent fungicidal mixtures to delay fungicidal resistance emergence.
杀菌剂混合物是延缓杀菌剂抗性发展的有效策略。在这项研究中,使用固定比例射线设计方法生成了五种具有不同作用模式的杀菌剂的五十种二元混合物。然后使用 CA 和 IA 模型分析这些混合物的相互作用。通过多元线性回归(MLR)、支持向量机(SVM)和人工神经网络(ANN)进行定量构效关系(QSAR)建模,以评估它们的杀菌活性。大多数混合物表现出相加相互作用,CA 模型在预测杀菌活性方面比 IA 模型更准确。MLR 模型显示出所选理论描述符与杀菌活性之间的良好线性相关性。然而,基于 ML 的模型均比 MLR 模型具有更好的预测性能。ANN 模型的预测能力略优于 SVM 模型,R 和 R 分别为 0.91 和 0.81。对于外部验证,R 值为 0.845。相比之下,SVM 模型的相同指标值分别为 0.91、0.78 和 0.77。总之,所提出的基于 ML 的模型可以成为开发有效杀菌剂混合物以延缓杀菌剂抗性出现的有价值工具。