Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
Sci Rep. 2024 Jun 3;14(1):12664. doi: 10.1038/s41598-024-63226-1.
Arabidopsis root is a classic model system in plant cell and molecular biology. The sensitivity of plant roots to local environmental perturbation challenges data reproducibility and incentivizes further optimization of imaging and phenotyping tools. Here we present RoPod, an easy-to-use toolkit for low-stress live time-lapse imaging of Arabidopsis roots. RoPod comprises a dedicated protocol for plant cultivation and a customizable 3D-printed vessel with integrated microscopy-grade glass that serves simultaneously as a growth and imaging chamber. RoPod reduces impact of sample handling, preserves live samples for prolonged imaging sessions, and facilitates application of treatments during image acquisition. We describe a protocol for RoPods fabrication and provide illustrative application pipelines for monitoring root hair growth and autophagic activity. Furthermore, we showcase how the use of RoPods advanced our understanding of plant autophagy, a major catabolic pathway and a key player in plant fitness. Specifically, we obtained fine time resolution for autophagy response to commonly used chemical modulators of the pathway and revealed previously overlooked cell type-specific changes in the autophagy response. These results will aid a deeper understanding of the physiological role of autophagy and provide valuable guidelines for choosing sampling time during end-point assays currently employed in plant autophagy research.
拟南芥根是植物细胞和分子生物学的经典模式系统。植物根对局部环境扰动的敏感性挑战了数据的可重复性,并促使人们进一步优化成像和表型分析工具。在这里,我们介绍了 RoPod,这是一种用于拟南芥根低压力实时延时成像的易用工具包。RoPod 包括一个专门的植物培养方案和一个可定制的 3D 打印容器,该容器集成了显微镜级别的玻璃,同时充当生长和成像室。RoPod 减少了样本处理的影响,可长时间保存活体样本进行成像,并便于在图像采集过程中施加处理。我们描述了 RoPods 的制作方案,并提供了监测根毛生长和自噬活性的说明性应用程序流程。此外,我们展示了 RoPods 的使用如何帮助我们深入了解植物自噬,这是一种主要的分解代谢途径,也是植物适应能力的关键参与者。具体来说,我们获得了自噬对常用途径化学调节剂的反应的精细时间分辨率,并揭示了自噬反应中以前被忽视的细胞类型特异性变化。这些结果将有助于深入了解自噬的生理作用,并为目前在植物自噬研究中使用的终点测定法中选择采样时间提供有价值的指导。