Suppr超能文献

机器学习加密方法在医疗保健物联网中的应用。

Machine learning cryptography methods for IoT in healthcare.

机构信息

Department of Computer Science and Software Engineering, Auckland University of Technology (AUT), 6 St. Paul Street, Auckland, 1010, New Zealand.

Together Communications, 77 Cook Street, Auckland, 1010, New Zealand.

出版信息

BMC Med Inform Decis Mak. 2024 Jun 4;24(1):153. doi: 10.1186/s12911-024-02548-6.

Abstract

BACKGROUND

The increased application of Internet of Things (IoT) in healthcare, has fueled concerns regarding the security and privacy of patient data. Lightweight Cryptography (LWC) algorithms can be seen as a potential solution to address this concern. Due to the high variation of LWC, the primary objective of this study was to identify a suitable yet effective algorithm for securing sensitive patient information on IoT devices.

METHODS

This study evaluates the performance of eight LWC algorithms-AES, PRESENT, MSEA, LEA, XTEA, SIMON, PRINCE, and RECTANGLE-using machine learning models. Experiments were conducted on a Raspberry Pi 3 microcontroller using 16 KB to 2048 KB files. Machine learning models were trained and tested for each LWC algorithm and their performance was evaluated based using precision, recall, F1-score, and accuracy metrics.

RESULTS

The study analyzed the encryption/decryption execution time, energy consumption, memory usage, and throughput of eight LWC algorithms. The RECTANGLE algorithm was identified as the most suitable and efficient LWC algorithm for IoT in healthcare due to its speed, efficiency, simplicity, and flexibility.

CONCLUSIONS

This research addresses security and privacy concerns in IoT healthcare and identifies key performance factors of LWC algorithms utilizing the SLR research methodology. Furthermore, the study provides insights into the optimal choice of LWC algorithm for enhancing privacy and security in IoT healthcare environments.

摘要

背景

物联网(IoT)在医疗保健中的应用日益广泛,引发了人们对患者数据安全和隐私的担忧。轻量级加密(LWC)算法可以被视为解决这一问题的潜在解决方案。由于 LWC 的高度变化,本研究的主要目的是确定一种合适且有效的算法,以保护 IoT 设备上的敏感患者信息。

方法

本研究使用机器学习模型评估了八种 LWC 算法(AES、PRESENT、MSEA、LEA、XTEA、SIMON、PRINCE 和 RECTANGLE)的性能。实验在 Raspberry Pi 3 微控制器上进行,使用 16KB 到 2048KB 的文件。针对每个 LWC 算法训练和测试了机器学习模型,并使用精度、召回率、F1 分数和准确性等指标评估了其性能。

结果

本研究分析了八种 LWC 算法的加密/解密执行时间、能耗、内存使用和吞吐量。由于其速度、效率、简单性和灵活性,RECTANGLE 算法被确定为最适合和高效的 IoT 医疗保健中的 LWC 算法。

结论

本研究通过使用 SLR 研究方法解决了 IoT 医疗保健中的安全和隐私问题,并确定了 LWC 算法的关键性能因素。此外,该研究还深入了解了在 IoT 医疗保健环境中增强隐私和安全性的最佳 LWC 算法选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98f5/11149267/c21bbe6c835f/12911_2024_2548_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验