Zhang Jinbo, Su Yanxia, Qiu Yuqian, Zhang Xinren, Xu Fei, Wang Hongqiang
State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China.
ACS Appl Mater Interfaces. 2024 Jun 12;16(23):30128-30136. doi: 10.1021/acsami.4c05023. Epub 2024 Jun 3.
The utilization of solid polymer electrolytes (SPEs) in all-solid-state sodium metal batteries has been extensively explored due to their excellent flexibility, processability adaptability to match roll-to-roll manufacturing processes, and good interfacial contact with a high-capacity Na anode; however, SPEs are still impeded by their inadequate mechanical strength, excessive thickness, and poor stability with Na anodes. Herein, a robust, thin, and cost-effective polyethylene (PE) film is employed as a skeleton for infiltrating poly(ethylene oxide)-sodium bis(trifluoromethanesulfonyl)imide (PEO/NaTFSI) to fabricate PE-PEO/NaTFSI SPE. The resulting SPE features a remarkable thickness of 25 μm, lightweight property (2.1 mg cm), superior mechanical strength (tensile strength = 100.3 MPa), and good flexibility. The SPE also shows an ionic conductivity of 9.4 × 10 S cm at 60 °C and enhanced interfacial stability with a sodium metal anode. Benefiting from these advantages, the assembled Na-Na symmetric cells with PE-PEO/NaTFSI show a high critical current density (1 mA cm) and excellent long-term cycling stability (3000 h at 0.3 mA cm). The all-solid-state Na||PE-PEO/NaTFSI||NaV(PO) coin cells exhibit a superior cycling performance, retaining 93% of the initial capacity for 190 cycles when matched with a 6 mg cm cathode loading. Meanwhile, the pouch cell can work stably after abuse testing, proving its flexibility and safety. This work offers a promising strategy to simultaneously achieve thin, high-strength, and safe solid-state electrolytes for all-solid-state sodium metal batteries.
由于具有出色的柔韧性、可加工性(适用于卷对卷制造工艺)以及与高容量钠阳极良好的界面接触性,固态钠金属电池中固态聚合物电解质(SPEs)的应用已得到广泛探索;然而,SPEs仍受限于其机械强度不足、厚度过大以及与钠阳极稳定性差等问题。在此,一种坚固、轻薄且经济高效的聚乙烯(PE)薄膜被用作骨架,用于渗透聚环氧乙烷-双(三氟甲烷磺酰)亚胺钠(PEO/NaTFSI)以制备PE-PEO/NaTFSI固态聚合物电解质。所得的固态聚合物电解质具有显著的25μm厚度、轻质特性(2.1mg/cm)、优异的机械强度(拉伸强度 = 100.3MPa)以及良好的柔韧性。该固态聚合物电解质在60°C时还显示出9.4×10⁻⁴S/cm的离子电导率,并增强了与钠金属阳极的界面稳定性。受益于这些优点,采用PE-PEO/NaTFSI组装的Na-Na对称电池显示出高临界电流密度(1mA/cm²)和出色的长期循环稳定性(在0.3mA/cm²下3000小时)。全固态Na||PE-PEO/NaTFSI||NaV₃(PO₄)₃硬币电池展现出卓越的循环性能,当与6mg/cm²的阴极负载匹配时,在190次循环中保持初始容量的93%。同时,软包电池在经过滥用测试后仍能稳定工作,证明了其柔韧性和安全性。这项工作为全固态钠金属电池同时实现轻薄、高强度和安全的固态电解质提供了一种有前景的策略。