Suppr超能文献

多模态、PSMA 靶向、PAMAM 树枝状大分子-药物偶联物治疗前列腺癌的临床前评价。

Multimodal, PSMA-Targeted, PAMAM Dendrimer-Drug Conjugates for Treatment of Prostate Cancer: Preclinical Evaluation.

机构信息

Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA.

Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

出版信息

Int J Nanomedicine. 2024 May 30;19:4995-5010. doi: 10.2147/IJN.S454128. eCollection 2024.

Abstract

INTRODUCTION

Prostate cancer (PC) is the second most common cancer and the fifth most frequent cause of cancer death among men. Prostate-specific membrane antigen (PSMA) expression is associated with aggressive PC, with expression in over 90% of patients with metastatic disease. Those characteristics have led to its use for PC diagnosis and therapies with radiopharmaceuticals, antibody-drug conjugates, and nanoparticles. Despite these advancements, none of the current therapeutics are curative and show some degree of toxicity. Here we present the synthesis and preclinical evaluation of a multimodal, PSMA-targeted dendrimer-drug conjugate (PT-DDC), synthesized using poly(amidoamine) (PAMAM) dendrimers. PT-DDC was designed to enable imaging of drug delivery, providing valuable insights to understand and enhance therapeutic response.

METHODS

The PT-DDC was synthesized through consecutive conjugation of generation-4 PAMAM dendrimers with maytansinoid-1 (DM1) a highly potent antimitotic agent, Cy5 infrared dye for optical imaging, 2,2',2"-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (NOTA) chelator for radiolabeling with copper-64 and positron emission tomography tomography/computed tomography (PET/CT), lysine-urea-glutamate (KEU) PSMA-targeting moiety and the remaining terminal primary amines were capped with butane-1,2-diol. Non-targeted control dendrimer-drug conjugate (Ctrl-DDC) was formulated without conjugation of KEU. PT-DDC and Ctrl-DDC were characterized using high-performance liquid chromatography, matrix assisted laser desorption ionization mass spectrometry and dynamic light scattering. In vitro and in vivo evaluation of PT-DDC and Ctrl-DDC were carried out in isogenic human prostate cancer PSMA PC3 PIP and PSMA PC3 flu cell lines, and in mice bearing the corresponding xenografts.

RESULTS

PT-DDC was stable in 1×PBS and human blood plasma and required glutathione for DM1 release. Optical, PET/CT and biodistribution studies confirmed the in vivo PSMA-specificity of PT-DDC. PT-DDC demonstrated dose-dependent accumulation and cytotoxicity in PSMA PC3 PIP cells, and also showed growth inhibition of the corresponding tumors. PT-DDC did not accumulate in PSMA PC3 flu tumors and did not inhibit their growth. Ctrl-DDC did not show PSMA specificity.

CONCLUSION

In this study, we synthesized a multimodal theranostic agent capable of delivering DM1 and a radionuclide to PSMA tumors. This approach holds promise for enhancing image-guided treatment of aggressive, metastatic subtypes of prostate cancer.

摘要

简介

前列腺癌(PC)是男性中第二常见的癌症和第五大常见的癌症死亡原因。前列腺特异性膜抗原(PSMA)的表达与侵袭性 PC 相关,在超过 90%的转移性疾病患者中表达。这些特征使其可用于 PC 的放射性药物、抗体药物偶联物和纳米颗粒的诊断和治疗。尽管取得了这些进展,但目前的治疗方法都没有治愈效果,并且具有一定程度的毒性。在这里,我们提出了一种多模态、PSMA 靶向树状聚合物-药物偶联物(PT-DDC)的合成和临床前评估,该偶联物是使用聚(酰胺-胺)(PAMAM)树状聚合物合成的。PT-DDC 的设计旨在实现药物递送的成像,为理解和增强治疗反应提供有价值的见解。

方法

PT-DDC 是通过连续接枝于四代 PAMAM 树状聚合物上合成的,其中包括美坦新-1(DM1)——一种高效的抗有丝分裂剂、Cy5 红外染料用于光学成像、2,2',2"-(1,4,7-三氮杂环壬烷-1,4,7-三基)三乙酸(NOTA)螯合剂用于标记铜-64 和正电子发射断层扫描/计算机断层扫描(PET/CT)、赖氨酸-脲-谷氨酸(KEU)PSMA 靶向部分和剩余的末端伯胺用丁烷-1,2-二醇封闭。未连接 KEU 合成了非靶向对照树状聚合物-药物偶联物(Ctrl-DDC)。PT-DDC 和 Ctrl-DDC 采用高效液相色谱法、基质辅助激光解吸电离质谱法和动态光散射进行表征。在同源人前列腺癌 PSMA PC3 PIP 和 PSMA PC3 flu 细胞系以及携带相应异种移植物的小鼠中进行了 PT-DDC 和 Ctrl-DDC 的体外和体内评价。

结果

PT-DDC 在 1×PBS 和人血浆中稳定,需要谷胱甘肽才能释放 DM1。光学、PET/CT 和生物分布研究证实了 PT-DDC 的体内 PSMA 特异性。PT-DDC 在 PSMA PC3 PIP 细胞中表现出剂量依赖性的积累和细胞毒性,并且还抑制了相应肿瘤的生长。PT-DDC 不会在 PSMA PC3 flu 肿瘤中积累,也不会抑制其生长。Ctrl-DDC 没有表现出 PSMA 的特异性。

结论

在这项研究中,我们合成了一种多模态治疗剂,能够向 PSMA 肿瘤递送 DM1 和放射性核素。这种方法有望增强对侵袭性、转移性前列腺癌亚型的图像引导治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f64/11146619/c61ea41ba741/IJN-19-4995-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验