Suppr超能文献

机器学习揭示脂蛋白对肝脏甘油三酯含量和炎症的作用。

Machine Learning Reveals the Contribution of Lipoproteins to Liver Triglyceride Content and Inflammation.

作者信息

Tavaglione Federica, Marafioti Giuseppe, Romeo Stefano, Jamialahmadi Oveis

机构信息

Operative Unit of Clinical Medicine and Hepatology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy.

Research Unit of Clinical Medicine and Hepatology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.

出版信息

J Clin Endocrinol Metab. 2024 Dec 18;110(1):218-227. doi: 10.1210/clinem/dgae371.

Abstract

CONTEXT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most common chronic liver disease worldwide and is strongly associated with metabolic comorbidities, including dyslipidemia.

OBJECTIVE

Herein, we aim to estimate the prevalence of MASLD and metabolic dysfunction-associated steatohepatitis (MASH) in Europeans with isolated hypercholesterolemia and isolated hypertriglyceridemia in the UK Biobank and to estimate the independent contribution of lipoproteins to liver triglyceride content.

METHODS

We selected 218 732 Europeans from the UK Biobank without chronic viral hepatitis and other causes of liver disease, of whom 14 937 with liver magnetic resonance imaging data available. Next, to examine the relationships between traits in predicting liver triglyceride content, we compared the predictive performance of several machine learning methods and selected the best performing algorithms based on the minimum cross-validated mean squared error (MSE).

RESULTS

There was an approximately 3-fold and 4-fold enrichment of MASLD and MASH in individuals with isolated hypertriglyceridemia (P = 1.23 × 10-41 and P = 1.29 × 10-10, respectively), whereas individuals with isolated hypercholesterolemia had a marginal higher rate of MASLD and no difference in MASH rate compared with the control group (P = .019 and P = .97, respectively). Among machine learning methods, the feed-forward neural network had the best cross-validation MSE on the validation set. Circulating triglycerides, after body mass index, were the second strongest independent predictor of liver proton density fat fraction with the largest absolute mean Shapley additive explanation value.

CONCLUSION

Isolated hypertriglyceridemia is the second strongest, after obesity, independent predictor of MASLD/MASH. Individuals with hypertriglyceridemia, but not with hypercholesterolemia, should be screened for liver disease.

摘要

背景

代谢功能障碍相关脂肪性肝病(MASLD)是目前全球最常见的慢性肝病,与包括血脂异常在内的代谢合并症密切相关。

目的

在此,我们旨在估计英国生物银行中患有单纯高胆固醇血症和单纯高甘油三酯血症的欧洲人中MASLD和代谢功能障碍相关脂肪性肝炎(MASH)的患病率,并估计脂蛋白对肝脏甘油三酯含量的独立贡献。

方法

我们从英国生物银行中选取了218732名无慢性病毒性肝炎和其他肝病病因的欧洲人,其中14937人有肝脏磁共振成像数据。接下来,为了研究预测肝脏甘油三酯含量的性状之间的关系,我们比较了几种机器学习方法的预测性能,并根据最小交叉验证均方误差(MSE)选择了性能最佳的算法。

结果

单纯高甘油三酯血症患者中MASLD和MASH的富集倍数分别约为3倍和4倍(分别为P = 1.23×10⁻⁴¹和P = 1.29×10⁻¹⁰),而单纯高胆固醇血症患者的MASLD发生率略高,MASH发生率与对照组相比无差异(分别为P = 0.019和P = 0.97)。在机器学习方法中,前馈神经网络在验证集上具有最佳的交叉验证MSE。在体重指数之后,循环甘油三酯是肝脏质子密度脂肪分数的第二强独立预测因子,其绝对平均夏普里附加解释值最大。

结论

单纯高甘油三酯血症是仅次于肥胖的MASLD/MASH的第二强独立预测因子。应筛查高甘油三酯血症患者而非高胆固醇血症患者是否患有肝病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ec3/11651681/dfe4c1f971ea/dgae371f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验