Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.
J Phys Chem B. 2024 Jun 13;128(23):5576-5589. doi: 10.1021/acs.jpcb.4c01178. Epub 2024 Jun 4.
Single-molecule free diffusion experiments enable accurate quantification of coexisting species or states. However, unequal brightness and diffusivity introduce a burst selection bias and affect the interpretation of experimental results. We address this issue with a photon-by-photon maximum likelihood method, burstML, which explicitly considers burst selection criteria. BurstML accurately estimates parameters, including photon count rates, diffusion times, Förster resonance energy transfer (FRET) efficiencies, and population, even in cases where species are poorly distinguished in FRET efficiency histograms. We develop a quantitative theory that determines the fraction of photon bursts corresponding to each species and thus obtain accurate species populations from the measured burst fractions. In addition, we provide a simple approximate formula for burst fractions and establish the range of parameters where unequal brightness and diffusivity can significantly affect the results obtained by conventional methods. The performance of the burstML method is compared with that of a maximum likelihood method that assumes equal species brightness and diffusivity, as well as standard Gaussian fitting of FRET efficiency histograms, using both simulated and real single-molecule data for cold-shock protein, protein L, and protein G. The burstML method enhances the accuracy of parameter estimation in single-molecule fluorescence studies.
单分子自由扩散实验能够准确量化共存的物种或状态。然而,不均匀的亮度和扩散率会引入突发选择偏差,并影响实验结果的解释。我们使用逐光子最大似然法 burstML 解决了这个问题,该方法明确考虑了突发选择标准。burstML 可以准确估计参数,包括光子计数率、扩散时间、Förster 共振能量转移 (FRET) 效率和种群,即使在 FRET 效率直方图中物种区分度较差的情况下也是如此。我们开发了一种定量理论,确定了与每个物种相对应的光子突发的分数,从而可以从测量的突发分数中获得准确的物种种群。此外,我们还提供了一个简单的近似公式来计算突发分数,并确定了不均匀亮度和扩散率可能显著影响传统方法获得结果的参数范围。我们使用冷休克蛋白、蛋白 L 和蛋白 G 的模拟和真实单分子数据,比较了 burstML 方法与假设物种亮度和扩散率相等的最大似然法以及 FRET 效率直方图的标准高斯拟合的性能。burstML 方法提高了单分子荧光研究中参数估计的准确性。