Li Zhuangnan, Yang Ziwei Jeffrey, Moloney James, Yu Craig P, Chhowalla Manish
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
ACS Nano. 2024 Jun 18;18(24):16041-16050. doi: 10.1021/acsnano.4c05002. Epub 2024 Jun 4.
Lithium-sulfur (Li-S) batteries are a promising high-energy-density technology for next-generation energy storage but suffer from an inadequate lifespan. The poor cycle life of Li-S batteries stems from their commonly adopted catholyte-mediated operating mechanism, where the shuttling of dissolved polysulfides results in active material loss on the sulfur cathode and surface corrosion on the lithium anode. Here, we report formation of a quasi-solid-state electrolyte (QSSE) on the metallic 1T phase molybdenum disulfide (MoS) host that extends the lifetime of Li-S batteries. We find that the metallic 1T phase MoS host is able to initiate the ring-opening polymerization of 1,3-dioxolane (DOL), forming an integrated QSSE inside batteries. Nuclear magnetic resonance analysis reveals that the QSSE consists of ∼13% liquid DOL in a solid polymer matrix. The QSSE efficiently mediates sulfur redox reactions through dissolution-conversion chemistry while simultaneously suppressing polysulfide shuttling. Therefore, while ensuring high sulfur utilization, it avoids degradation of both electrodes, as well as the concomitant electrolyte consumption, leading to enhanced cycling stability. Under a practical lean electrolyte condition (electrolyte-to-sulfur ratio = 2 μL mg), Li-S pouch cell batteries with the QSSE demonstrate a capacity retention of 80.7% after 200 cycles, much superior to conventional liquid electrolyte cells that fail within 70 cycles. The QSSE also enables Li-S pouch cell batteries to operate across a wider temperature range (5 to 45 °C), together with improved safety under mechanical damage.
锂硫(Li-S)电池是一种很有前景的用于下一代储能的高能量密度技术,但存在寿命不足的问题。Li-S电池较差的循环寿命源于其普遍采用的阴极电解液介导的运行机制,在这种机制下,溶解的多硫化物穿梭导致硫阴极上的活性材料损失和锂阳极表面腐蚀。在此,我们报告在金属1T相二硫化钼(MoS)主体上形成准固态电解质(QSSE),可延长Li-S电池的寿命。我们发现金属1T相MoS主体能够引发1,3 - 二氧戊环(DOL)的开环聚合,在电池内部形成一体化的QSSE。核磁共振分析表明,QSSE由固体聚合物基质中约13%的液态DOL组成。QSSE通过溶解 - 转化化学有效地介导硫氧化还原反应,同时抑制多硫化物穿梭。因此,在确保高硫利用率的同时,它避免了两个电极的降解以及随之而来的电解质消耗,从而提高了循环稳定性。在实际贫电解质条件下(电解质与硫的比例 = 2 μL mg),具有QSSE的Li-S软包电池在200次循环后容量保持率为80.7%,远优于在70次循环内就失效的传统液体电解质电池。QSSE还使Li-S软包电池能够在更宽的温度范围(5至45°C)内运行,同时在机械损伤下提高了安全性。